Inverse problems for degenerate parabolic

De
Publié par

1/25 Inverse problems for degenerate parabolic equations Jacques TORT Institut de Mathématiques de Toulouse Université Paul Sabatier, Toulouse III Workshop Control of Parabolic Equations and Systems, Applications to Fluids, IHP, November 15-19, 2010

  • insolation function

  • advection fluxes

  • lipschitz stability

  • earth surface

  • reaction-di?usion process

  • climate model

  • compact riemannian


Publié le : mardi 19 juin 2012
Lecture(s) : 45
Source : univ-orleans.fr
Nombre de pages : 32
Voir plus Voir moins

rkshop1/25erInverseandpIroblemsafoFluids,roulousedegenerateWpaofrabolicolicApplicationsequations,Jacques2010TORTIInstitutIdeoMath?matiquesControldePTraboulouseEquationsUniversit?Systems,PtoaulIHPSabaNovembti15-19,er,Tequation2/25sourceThesis2010advisodegeneraterl:DeterminationJ.inVrabancostenobleInverse1-Dslineamamoto.aofrtermscaseaPpa.olicCanna,rsa,ProbJ.T.emand,M.Yrab3/25oContentsuniquenessI.eTheIV.Budykyo-SellrogressersrclimatecmowdelLipschitzIV.I.inApclassfoofpadegeneoliraequationstTeo1-DandpastabilitrabresultsolicWequationsrkIpIandI.erspInversectivesProblems=
M
( r ) =
I ( ; ; ) = ( ; )( )
I =
I =
I ( ) = j j
I ( r ) >
teaninsolationmanifoldkreaction-diusiondpenergyrouxescessrthonetherthEaes,...)rth=surfaceQuunctiontalbdivThemateuksurfacecli:ugao-SellersdivBudykuRandakRfaefThesurREaaeI.otR4/25eraturexmpTheuuu(1969)3Riemanniemitted0)(greenhousecompactztEaadelxu,delmoconduction:advectionu(ecmoQ=
M
( r ) =
I ( ; ; ) = ( ; )( )
I =
I =
I ( ) = j j
I ( r ) >
uaninsolationmanifoldThereaction-diusionop(greenhouserosurcessmponsurfacethe3EadelrthfasurfaceQuThetedivRclirthkuo-SellersemitteduzBudykmoThecRuarthREaefunctionI.eratureRalbad4/25teRiemanniecompactuconductionEaadvectionmo(ua:,energyQgamatees,...)tdiv:kxue=(1969)andxuxesdelku0)t=
M
( r ) =
I ( ; ; ) = ( ; )

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.