Thèse présentée pour obtenir le grade de Docteur de l'Université Louis Pasteur

De
Publié par

Niveau: Supérieur
.. . . . . . Thèse présentée pour obtenir le grade de Docteur de l'Université Louis Pasteur Strasbourg I Discipline : Astrophysique par Lionel VELTZ Formation du disque de la Voie Lactée Soutenue publiquement le ? décembre ???? Membres du jury Directeur de Thèse : M. Olivier BIENAYMÉ, Astronome, Observatoire de Strasbourg Co-directeur de Thèse : M. Ken FREEMAN, Professeur, Australian National University, Canberra Président du jury et Rapporteur Interne Mme. Ariane LANCON, Professeur, Observatoire de Strasbourg Rapporteur Externe : Mme. Ana GOMEZ, Astronome,GEPI - Observatoire de Paris Rapporteur Externe : Mme Annie ROBIN, DR CNRS, Observatoire de Besançon

  • tion d'étoiles au moment de la rencontre

  • inversion

  • satellite galaxy

  • observatoire de strasbourg

  • disque épais

  • méthode d'inversion directe

  • modélisation cinématique du disque de la galaxie

  • gepi - observatoire de paris rapporteur


Publié le : mercredi 30 mai 2012
Lecture(s) : 44
Source : scd-theses.u-strasbg.fr
Nombre de pages : 134
Voir plus Voir moins

Thèseprésentéepourobtenirlegradede.
Docteurdel’UniversitéLouisPasteur.
StrasbourgI.
.
. Discipline:Astrophysique
.
parLionelVELTZ.
FormationdudisquedelaVoieLactée
Soutenuepubliquementledécembre
Membresdujury
DirecteurdeThèse: M.OlivierBIENAYMÉ,Astronome,ObservatoiredeStrasbourg
Co directeurdeThèse: M.KenF REEMAN,Professeur,AustralianNationalUniversity,Canberra
Présidentdujuryet
RapporteurInterne Mme.ArianeLANCON,Professeur,ObservatoiredeStrasbourgExterne: Mme.AnaGOMEZ,Astronome,GEPI-edeParis
Rapporteur: MmeAnnieROBIN,DRCNRS,ObservatoiredeBesançonRésumé
Cettethèseétudielacinématiquedudisquedelagalaxieenvuedecontraindrelesmodèlesde
saformation.ElleseplacedanslecadreduprojetRAVEquiapourbutdefairedesmesuresspec
troscopiquesdevitessesradialesetdeparamètresstellairesd’unmilliond’étoilesdel’hémisphère
célesteSud.Pourdéterminerlescaractéristiquescinématiquesdudisque,deuxméthodesontété
utiliséesl’inversiondirectedescomptagesd’étoilesenfonctiondeladistanceetdelavitesseetla
modélisationcinématiquedudisquedelagalaxie.
Pour l’inversion, la distance photométrique des étoiles a été déterminée à partir de leur ma
gnitude apparente, en faisant une sélection en couleur judicieuse. Les mouvements propres ont
ensuite été transformés en vitesse. La méthode d’inversion directe a permis d’obtenir une dé
compositioncinématiquedudisquequiprésenteunenetteséparationentreledisqueminceetle
disqueépais.Cependant,cetteméthodeuncertainnombredebiais.
Le modèle cinématique combine les comptages en magnitude obtenus à partir du catalogue
2MASS avec les mesures de mouvements propres du catalogue UCAC2 et de vitesses radiales
de RAVE. Ce modèle est un modèle auto cohérent qui relie la densité d’étoiles aux dispersions
de vitesse via le potentiel gravitationnel. La décomposition cinématique du disque galactique
obtenugrâceaumodèlemontreclairementtroiscomposantes:unepremièrecomposante(disque
−1mince)avecdesdispersionsdevitessesverticalesσ comprisentre10et25km.s ,unedeuxièmeW
−1(disqueépais)avecdesdispersionsdeσ ∈[30−45]km.s etunetroisième(disqueépaissous W
−1métalliqueouhalo)avecσ ∼65km.s .W
Lesdeuxméthodesdonnentunedécompositioncinématiquequimontrelamêmeséparation
cinématiqueentrelesdisquesminceetépais.Enconséquence,lesscénariosquienvisagentlapos
sibilitéd’undisqueminceinitialquiauraitété«chauffé»pardesnuagesmoléculairesouparles
bras spiraux sont exclus par ces résultats. D’autres mécanismes de formation du disque épais
commel’accrétionprogressived’étoilesvenantdegalaxiessatellitesoulechauffagevoirelacréa
tion d’étoiles au moment de la rencontre entre une galaxie satellite importante et notre galaxie
restentpossibles.
Abstract
This thesis work has focused on the Galactic disk kinematics to put some constraints on the
scenarios of the thin and thick disk formation. It takes part of the RAVE project which has the
goal to spectrocpically measure the radial velocities and the stellar parameters of one million
stars in the South celestial hemisphere. To determine the kinematical characteristic of the disk,
twomethodshavebeenused,thedirectinversionofthestellarcountsinfunctionofdistanceand
velocityandthekinematicalmodellingofthegalacticdisk.
For the inversion, the photometric distance of stars have been determined from the apparent
magnitudeindoinganappropriatecolourselection.Thepropermotionshavebeenaftertransfor-
medinvelocity.Thedirectinversionmethodhaspermittedtoobtainakinematicaldecomposition
ofthegalacticdiskwhichpresentsaclearseparationbetweenthethinandthethickdisk.Never-
theless,thismethodshowssomebias.
Thekinematicalmodelcombinesthecountsinmagnitudeobtainedfromthe2MASScatalogue
withthemeasuresofpropermotionsofUCAC2catalogueandofradialvelocitiesofRAVE.This
model is a self consistent model which joins the stellar density with the velocity dispersions via
the gravitational potential. The kinematical decomposition of the disk obtained from the model
shows clearly three components : a first component (thin disk) with vertical velocity dispersion
−1 −1σ between10and25km.s ,secondone(thickdisk)withdispersionsof σ ∈[30−45]km.sW W
−1andthirdone(metalweakthickdiskorhalo)withσ ∼65km.s .W
Thetwomethodsgiveakinematicaldecompositionwhichshowsthesamekinematicalsepa
rationbetweenthethinandthickdisks.Inconsequence,thescenarioswhichofferthepossibility
of an initial thin disk which would had been " heated " by molecular clouds or spiral arms are
ruled out by these results. Other mechanisms of the formation of the thick disk like progressive
accretion of stars coming from satellite galaxies or the heating or the creation of stars during the
encounterofanimportantsatellitegalaxyandourGalaxyremainpossible.Remerciements
Unethèse,c’estuneaventure.Onpartàl’explorationd’unterritoireinconnu.Etmêmesil’on
a une idée de la destination, on ne sait pas comment on va l’atteindre. Heureusement, je ne suis
paspartiseul.OlivierBeinayméetKenFreemanontétémesguidesdurantcestroisansdethèse.
Ilsm’ontaccompagnéetproposédesvoiesderecherches.Jelesenremercie.
Cetteaventuren’auraitpasétépossiblesanslacollaborationRAVE.Aussi,jetiensàremercier
Mathias Steinmetz qui la dirige et tous ces membres. Je veux en particulier adresser ma recon
naissanceàJamesBinney,GerryGilmore,RosemaryWyse,AminaHelmietArnaudSiebertpour
leursprécieuxcommentairessurmontravail.
Cette aventure a été couronnée de succès grâce à mon jury de thèse. Je tiens à remercier les
rapporteursdemathèseAnaGomez,ArianeLançonetAnnieRobinpourleurbienveillancedans
lalecturedemonmanuscritetleursconseilspourl’améliorer.JetiensaussiàsaluerAgnèsAcker
quiatoujoursmontréunregardpositifsurmontravail.
Unethèseestaussisouventsynonymedevoyages.Del’observatoiredeStrasbourgenFrance
oùj’aipassémapremièreannée,jesuispartipourl’observatoiredeMountStromloenAustralie
pourmadeuxièmeannée.Jemesuiségalementrenduàl’ObservatoiredeHauteProvenceetl’ob
servatoiredeSidingSpring.Danschacunedecesinstitutions,j’aireçuunaccueilchaleureux.J’en
remercie tous les personnels de ces observatoires. J’ai une pensée plus particulière pour Bruno
Moya, Estelle Brunette, Sandrine Langenbacher, Jean Yves Hangouet et Thomas Keller à Stras
bourg,pourMàireNìMhòrdha,GraemeBlackmanetAlbertEichholzeràCanberra.Jetiensaussi
àexprimertoutemonamitiéetmareconnaissanceauxobservateursdeRAVE:FredWatson,Ken
Russel,MalcomHartleyetPaulCass.
Aucoursdemathèse,j’aieul’occasiondedonnerdescoursàdesétudiantsdelicence.Cette
expérience m’a apporté beaucoup de plaisir que ce soit avec une dizaine d’étudiants comme en
T.P. d’informatique ou faceà 250étudiants dansun amphithéâtrepour desT.D. d’astronomie.Je
tiensàremercierMarcMunschy,ChristianBoily,RubensFreireetHubertBatydem’avoirdonner
l’opportunitéd’enseignerdansleurmodule.JeremercieaussiDominiqueAubertquicommemoi
débutait dans l’enseignement de l’informatique pour les discussions que nous avons eues et qui
m’ontaidéàmeneràbiencescours.
JetiensàremercierFabienpourtouteslesdiscussionsdefindejournéequenousavonseues.
Ellesmepermettaientdefairelebilandelajournéeetd’envisagerlasuitedemestravaux.Jetiens
àremercierJean Julienquim’adonnél’occasiond’encadrerdesTIPE,maisquim’aaussifaitdé
couvrir Ruby et Tioga. Je tiens à remercier Olivier Hérent pour les discussions très intéressantes
quenousavonsàproposdesonmodèlederépartitiondessourcesXdanslagalaxie.
Jetiensàsaluertouslesthèsardsquej’aicôtoyésàl’observatoiredeStrasbourgenparticulier
NicolasFaber,MaximeViallet,CiroPappalardo,BrentMiszalski,AlexisKlutsch,Francois Xavier
Pineau, Matthieu Petreman et Morgan Fouesneau. Je n’oublie pas non plus les thèsards de l’ob
servatoiredeMountStromlo,enparticulierMaryWilliams,PatrickBouchardetSe HeonOh.
Je tiens à exprimer toute mon amitié à Eduardo Amores, postdoc à l’observatoire de Stras
bourg.
J’adresseunsalutamicalauxdifférentsstagiairesquisesontsuccédéàl’observatoireenparti
culierpourceuxquisontdevenuthésardcommeFlorentRenaudetBenjaminPerretetceuxavec
quij’aipartagédespassionscommunesMarcetDamienMat.
Je remercie ma famille qui m’a soutenu tout au long de mes études et qui m’a encouragé à
poursuivre.
ivEnfin,jenepeuxpasfinirsansdireàquelpointlaprésenceàmescotésdemafuture femme,
Marion, a été pour moi un encouragement de tous les instants. Elle m’a aidé à me souvenir des
chosesimportantesauxquelsilfallaitquejepense,àpréparermesprésentationsetm’afaitprofiter
desapropreexpériencedutravaildethèse.Jesouhaiteluiexprimerplusquedesremerciements.
C’estavectoutmonamourquejenoussouhaitedevivreheureuxetd’avoirdenombreuxenfants.
Etpourn’oublierpersonne,jeveuxdireungrandmerciàtouteslespersonnesquej’airencon
tréesaucoursdecestroisannéesdethèsequichacuneselonleursméritesm’ontapportéquelque
chose.viTabledesmatières
Introduction 1
1 ÉvolutiondelaconceptiondelaVoieLactée . . . . . . . . . . . . . . . . . . . . . . 1
2 LaVoieLactéeparrapportauxautresgalaxies . . . . . . . . . . . . . . . . . . . . . 2
3 Montravaildethèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
I LaVoieLactée 7
1 Lebulbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Cinématique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Compositionchimique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Ledisquegalactique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Structuresdudisque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Leséchellesdehauteur . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Leséchellesdelongueur . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Caractéristiquescinématiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Cinématiquedudisquemince . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2duépais . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Caractéristiqueschimiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Lehalo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Caractéristiquescinématiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3chimiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Scénariosdeformationdelagalaxie . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Chauffagedudisqueminceinitial . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Créationduépaisavantledisquemince . . . . . . . . . . . . . . . . . 23
4.3 Apportsextérieurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 contraintessurlesscénarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
II Leséchantillons 33
1 Sélections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.1 Choixdufiltre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2 Positionsurleciel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3 Couleur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.4 Récapitulatifdessélections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2 Magnitudesabsolues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Lesgéantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Lesnaines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 L’échantillon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Caractéristiquesdenoséchantillons . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1 Cataloguephotométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
viiTabledesmatières
3.1.1 Leserreursphotométriques . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Laséparationdesétoilesetdesgalaxies . . . . . . . . . . . . . . . . . . 40
3.1.3 Lacomplétudeenmagnitude . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.4 Impactdeserreurssurl’analysedescomptages . . . . . . . . . . . . . . 41
3.2 Caractéristiquesdel’échantillonpourlesmouvementspropres . . . . . . . . 42
3.2.1 Leserreursdel’UCAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Comparaisondesmouvementspropresdenotreéchantillonavecceux
dePM2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Impactdeserreurssurl’analysedesmouvementspropres . . . . . . . 47
3.3 Cataloguedevitessesradiales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Leserreurssurlesvitessesradiales . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Impactdeserreurssurl’analysedesvitessesradiales . . . . . . . . . . 48
3.4 Récapitulatifdel’impactdeserreurs . . . . . . . . . . . . . . . . . . . . . . . . 49
Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
III L’inversion 53
1 Préparationdel’échantillon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2 Inversiondirecte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Biaisdelaméthode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1 Effetdelatailledesintervallesdel’histogramme. . . . . . . . . . . . . . . . . 58
4.2 Effetdunombred’étoiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Séparationdedeuxpopulations . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5 Conclusionspourl’inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
IV Lemodèlecigal 67
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2 Descriptionglobale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3 Ladensitéetlepotentielvertical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Lesdistributionscinématiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Lesfonctionsdeluminosité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6 Lesparamètresdumodèle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
V Résultatsdumodèlecigal 75
1 Ajustementdumodèleauxobservations . . . . . . . . . . . . . . . . . . . . . . . . 75
1.1 Lescomptages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.2 Leshistogrammesdemouvementspropres . . . . . . . . . . . . . . . . . . . . 76
1.3 Lesdevitessesradiales . . . . . . . . . . . . . . . . . . . . . . . 76
2 Séparationnaines géantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3 Décompositioncinématique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1 Contributionscinématiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Testssurladiscontinuitédescomposantescinématiques . . . . . . . . . . . . 99
3.3 Échellesdehauteur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4 Paramètrescinématiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.1 Courantasymétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Lesrapportsd’axesdel’ellipsoïde . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Vitesseetpositiondusoleil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4 Comparaisonsavecd’autresmodèles . . . . . . . . . . . . . . . . . . . . . . . 107
5 Fonctiondeluminosité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
viiiTabledesmatières
Conclusion 111
1 Intérêtsdeséchantillons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2 Lesméthodesetleursrésultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3 ConséquencespourlesscénariosdeformationdelaVoieLactée . . . . . . . . . . . 113
4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A Article1 115
B Article2 141
C MaparticipationàRAVE 157
ixTabledesmatières
x

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.

Diffusez cette publication

Vous aimerez aussi