Généralités sur les fonctions(obligatoire) Activité 4

De
Publié par

Visualisez les activités et les travaux pratiques 2008/2009 pour la classe de première ES.
Publié le : mardi 1 janvier 2008
Lecture(s) : 15
Source : sarmate.free.fr
Nombre de pages : 3
Voir plus Voir moins

1ere ES2
2 1−3x 1x −2 √h(x) = j(c) =f(x) = 2x +3x−2 3−2c4x+3
2x −1√√
2 k(x) =g(x) = −7x−5 i(t) = −2t +3t+2 x−1

2 2√ x 1 1 x22 f(x) = g(x) = x + h(x) = 3x+8 i(x) = +x j(x) = x−1 x x x+1
√ √2 12k(x) = 3x+4 l(x) = −3 m(x) = (x+2) + n(x) = −3x−8
x−1 x+2
2p x 2
p(x) = |3x+8| q(x) = +2 r(x) =−
x−1 x−1
10
6 6
8
4 4
6
2 2
4
−6 −4 −2 −6 −4 −22
−2 −2
−4 −2 2−4 −4
6 2 6
4 4
−4 −2 2
−22 2
−4
−4 −2 2 −4 −2 2
−2 −6 −2
−4 −8 −4
alg?-
4
?
?
er
V
suiv
qui

1

fonctions,
en
,
otre
plusieurs
d?nies
de
de
alg?briques
,
,

,
t
expressions
ainsi
les

orthonorm?s.
,

les
?res
des
utiliser
de
rep
ble
des
T
dans
Ensembles
.
fonctions
,
Qui
es
d'argumen
tiv
usan
ta-
que
repr?sen
G?n?ralit?s
,
et
:
sur
ts
v
p
briques
ertinen
expressions
ts,
par
trouv
fonctions
,

es
,

d?nition
leurs
A
tes
l'ensem
er
rouv
an
d?nition
quel
de
graphe
1


ond
les
?
2
quelle
est
fonction
Sans
,4 2 6
2 4
−4 −2 2
−2 2
−4 −2 2
−2 −4
−6 −4 −2
−4 −6 −2
−6 −8 −4
6 8 6
4 6 4
2 4 2
2
−4 −2 2 −4 −2 2
−2 −2
−4 −2 2
−4 −2 −4
3f f(x) = x R
2 2(x−y)(x +xy +y )
x y xy 2xy
2 2x +xy +y
x y x < y f(x) < f(y)
1
∗g R g(x) =+ x
g ]−∞;0[
g ]0;+∞[
...
1 2
f(x) = g(x) =− +3
2x x
de
bres
de
En
ariation
et
On
4.
.
tels

que
des
.
e"
de
D?v
signe
le
,
v
mon
5
trer
sens
alors
tes
que
d?nie
le
fonction
d?duire
er
2
.
nom
Quel
.
de
et
ariation
bres
sens
nom
?
les
de
.
Donner
5.
v
Conclure.
suiv

justian
4
par
Sens
la
de
t
variation
de
de
3
la
elopp
fonction
1.
"inverse"
sur
On
2.
note
est

sens
la
v
fonction
de
in
sur
v
de
erse
son
d?nie
souhaite
sur

de
Sens
et
variation
de
fonctions
par
le
signe
de
du
ariation
fonction
fonctions
En
an
2.
(en
.
t
:
.
.
)
1.
fonction
D?mon
Soit
trer
"cub
que

l'expression
la
est
variation
deux
Sens

sur

te
3.
En

Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.