Cours TS

De
Publié par

Licence Professionnel Optronique Année 2004 - 2005 Rappels Traitement du Signal Note de cours T.Dumartin 1 GENERALITES 4 1.1 INTRODUCTION 4 1.2 DEFINITIONS 4 1.2.1 SIGNAL 4 1.2.2 BRUIT 4 1.2.3 RAPPORT SIGNAL SUR BRUIT 1.2.4 SYSTEME 4 1.3 CLASSIFICATION DES SIGNAUX 5 1.3.1 CLASSIFICATION PHENOMENOLOGIQUE 1.3.2 CON ENERGETIQUE 1.3.3 CON MORPHOLOGIQUE 1.4 SIGNAUX PARTICULIERS 6 1.4.1 FONCTION SIGNE 6 1.4.2 FONCTION ECHELON 6 1.4.3 FONCTION RAMPE 6 1.4.4 FONCTION RECTANGULAIRE 6 1.4.5 IMPULSION DE DIRAC 7 1.4.6 PEIGNE DE DIRAC 8 1.4.7 FONCTION SINUS CARDINAL 8 1.5 REPRESENTATION FREQUENTIELLE 2 TRAITEMENT DU SIGNAL ANALOGIQUE 9 2.1 SERIE DE FOURIER 9 2.1.1 DEFINITION 9 2.1.2 DEVELOPPEMENT EN TERMES COMPLEXES 10 2.1.3 PROPRIETES 10 2.2 TRANSFORMEE DE FOURIER 2.2.1 DEFINITION 10 2.2.2 PROPRIETES 11 2.2.3 EXEMPLE 12 2.3 CONVOLUTION 12 2.3.1 DEFINITION 12 2.3.2 TRANSFORMEE DE FOURIER 13 2.4 NOTION DE FILTRAGE 13 2.4.1 FONCTION DE TRANSFERT 2.4.2 FILTRE REEL – GABARIT 14 2.5 NOTION DE MODULATION 15 2.5.1 PRINCIPE 15 2.5.2 MODULATION D’AMPLITUDE 3 NUMERISATION 17 3.1 ECHANTILLONNAGE 17 3.1.1 DEFINITION 17 3.1.2 ECHANTILLONNAGE IDEAL 3.1.3 EE REEL 18 3.1.4 ECHANTILLONNAGE-BLOCAGE 19 3.2 QUANTIFICATION 20 3.2.1 DEFINITION 20 3.2.2 QUANTIFICATION UNIFORME 20 3.3 CODAGE 21 4 TRAITEMENT DU SIGNAL NUMERIQUE 22 4.1 ...
Publié le : jeudi 22 septembre 2011
Lecture(s) : 176
Nombre de pages : 29
Voir plus Voir moins
 Licence Professionnel Optronique
                     
                            
 
Année 2004 - 2005 
 Rappels Traitement du Signal Note de cours T.Dumartin
 
1 GENERALITES 1.1 INTRODUCTION 1.2 DEFINITIONS 1.2.1 SIGNAL 1.2.2 BRUIT 1.2.3 RAPPORT SIGNAL SUR BRUIT 1.2.4 SYSTEME 1.3 CLASSIFICATION DES SIGNAUX 1.3.1 CLASSIFICATION PHENOMENOLOGIQUE 1.3.2 CLASSIFICATION ENERGETIQUE 1.3.3 CLASSIFICATION MORPHOLOGIQUE 1.4 SIGNAUX PARTICULIERS 1.4.1 FONCTION SIGNE 1.4.2 FONCTION ECHELON 1.4.3 FONCTION RAMPE 1.4.4 FONCTION RECTANGULAIRE 1.4.5 IMPULSION DEDIRAC 1.4.6 PEIGNE DEDIRAC 1.4.7 FONCTION SINUS CARDINAL 1.5 REPRESENTATION FREQUENTIELLE 2 TRAITEMENT DU SIGNAL ANALOGIQUE 2.1 SERIE DEFOURIER 2.1.1 DEFINITION 2.1.2 DEVELOPPEMENT EN TERMES COMPLEXES 2.1.3 PROPRIETES 2.2 TRANSFORMEE DEFOURIER 2.2.1 DEFINITION 2.2.2 PROPRIETES 2.2.3 EXEMPLE 2.3 CONVOLUTION 2.3.1 DEFINITION 2.3.2 TRANSFORMEE DEFOURIER 2.4 NOTION DEFILTRAGE 2.4.1 FONCTION DE TRANSFERT 2.4.2 FILTRE REELGABARIT 2.5 NOTION DEMODULATION 2.5.1 PRINCIPE 2.5.2 MODULATION DAMPLITUDE 3 NUMERISATION 3.1 ECHANTILLONNAGE 3.1.1 DEFINITION 3.1.2 ECHANTILLONNAGE IDEAL 3.1.3 ECHANTILLONNAGE REEL 3.1.4 ECHANTILLONNAGE-BLOCAGE 3.2 QUANTIFICATION 3.2.1 DEFINITION 3.2.2 QUANTIFICATION UNIFORME 3.3 CODAGE 
4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 7 8 8 8 9 9 9 10 10 10 10 11 12 12 12 13 13 13 14 15 15 15 17 17 17 17 18 19 20 20 20 21 
 
4 TRAITEMENT DU SIGNAL NUMERIQUE 
4.1 TRANSFORMEE DEFOURIER D'UN SIGNAL DISCRET 4.1.1 DEFINITION 4.1.2 PROPRIETES 4.2 TRANSFORMEE DEFOURIER DISCRETE 4.2.1 FENETRAGE 4.2.2 ECHANTILLONNAGE EN FREQUENCE 4.3 NOTION DE TRANSFORMEE DEFOURIER RAPIDE 4.3.1 PRESENTATION A LALGORITHME DECOOLEY-TUCKEY   Annexe 1 : Transformée de Fourier dun peigne de Dirac Annexe 2 : Transformée de Fourier de la fonction porte                                  
22 
22 22 22 23 23 24 26 26 
 
Chapitre 1
1 Généralités  1.1 Introduction Le traitement du signal est une discipline indispensable de nos jours. Il a pour objet l'élaboration ou l'interprétation des signaux porteurs d'informations. Son but est donc de réussir à extraire un maximum d'information utile sur unsignalperturbé par dubruiten s'appuyant sur les ressources de l'électronique et de l'informatique.   1.2 Définitions 1.2.1 Signal Unsignal la représentation physique de l'information, qu'il convoie de sa source à son est destinataire. La description mathématique des signaux est l'objectif de la théorie du signal. Elle offre les moyens d'analyser, de concevoir et de caractériser des systèmes de traitement de l'information.  1.2.2 Bruit Unbruitcorrespond à tout phénomène perturbateur gênant la transmission ou l'interprétation d'un signal.  Remarque : Les notions de signal et bruit sont très relatives. Pour un technicien des télécommunications qui écoute un émetteur lointain relayé par un satellite, le signal provenant dune source astrophysique (soleil, quasar) placée malencontreusement dans la même direction est un bruit. Mais pour lastronome qui sintéresse à la source astrophysique, cest le signal du satellite qui est un bruit.  1.2.3 Rapport signal sur bruit Lerapport signal sur bruitmesure la quantité de bruit contenue dans le signal. Il s'exprime par le rapport des puissances du signal (PS) et du bruit (PN). Il est souvent donné en décibels (dB).  S   NSdBPogP0l=1N  1.2.4 Système Unsystème est un dispositif représenté par un modèle mathématique de type Entrée/Sortie qui apporte une déformation au signal (Ex: modulateur, filtre, etc).     EntréeSystèmeSortie       
 
1.3 Classification des signaux On peut envisager plusieurs modes de classification pour les signaux suivant leurs propriétés.  1.3.1 Classification phénoménologique On considère la nature de l'évolution du signal en fonction du temps. Il apparaît deux types de signaux :  Les signaux déterministes : ou signaux certains, leur évolution en fonction du temps peut être parfaitement modéliser par une fonction mathématique. On retrouve dans cette classe les signaux périodiques, les signaux transitoires, les signaux pseudo-aléatoires, etc  Les signaux aléatoires : comportement temporel est imprévisible. Il faut faire appel à leur leurs propriétés statistiques pour les décrire. Si leurs propriétés statistiques sont invariantes dans le temps, on dit qu'ils sont stationnaires.  1.3.2 Classification énergétique On considère l'énergie des signaux. On distingue :  Les signaux à énergie finie :il possède une puissance moyenne nulle et une énergie finie.  Les signaux à puissance moyenne finie :il possède une énergie infinie et sont donc physiquement irréalisable.  Rappels : +Energie d'un signal x(t)  Wx=x(t)2dt -Puissance l 1P =T/ 2 d'un signal x(t) xTimTx(t)2dt - T/ 2  1.3.3 Classification morphologique On distingue les signaux à variable continue des signaux à variable discrète ainsi que ceux dont l'amplitude est discrète ou continue.   
 
  x(t)
 x[n]
Continue
 x(t)
t  [n] x
n quantification
Discrète
t
n
 On obtient donc 4 classes de signaux :  Les signaux analogiquesdont l'amplitude et le temps sont continus  Les signaux quantifiésdont l'amplitude est discrète et le temps continu Les signaux échantillonnésdont l'amplitude est continue et le temps discret Les signaux numériquesdont l'amplitude et le temps sont discrets   1.4 Signaux particuliers Afin de simplifier les opérations ainsi que les formules obtenues, certains signaux fréquemment rencontrés en traitement du signal dispose d'une modélisation propre.  1.4.1 Fonction signesgn(t)  1  <-1 pou sgn(t)=0  t>our    p1+t0 r   t  -1  Par convention, on admet pour valeur à l'origine : sgn (t) =0 pour t=0.  1.4.2 Fonction échelonu(t)  0<0 0  t>  r  t pou 1 u(t)=1o  p urt   Par convention, on admet pour valeur à l'origine: u (t) = ½ pour t=0. Dans certains, il sera préférable de lui donner la valeur 1.  1.4.3 Fonction rampe r(t)  r(t) = t . u(t) t1  =u(τ)dτ t -1   1.4.4 Fonction rectangulaire  1rec(t/T) t p  1 t2T<  ruo 1 rect ( )= Tt 0   t1r  > pou2T-T/2 T/2  On l'appelle aussi fonction porte. Elle sert de fonction de fenêtrage élémentaire.
 
 
 
 
 
1.4.5 Impulsion de Dirac L'impulsion de Dirac correspond à une fonction porte dont laδ(t) largeur T tendrait vers 0 et dont l'aire est égale à 1.1    δ(t)=0our    p 0 t =  rt p uot1      0  δ (t) ne peut être représentée graphiquement. On la schématise par le symbole  Attention: le1marqué sur la flèche pleine représente laire de cette impulsion (et non la hauteur de limpulsion). On peut encore considérerδ (t) comme la dérivée de la fonction écδd(u)t()t helon := . dt  Propriétés :  Intégrale +∞ δ =(t) dt 1 −∞ +∞ x(t).δ(t) dt = x(0) −∞ +∞ x(t).δ(tt0) dt = x(t0) −∞  Produit        x(t).δ(t) = x(0).δ(t)=x(0) x(t).δ(tt0) = x(t0).δ(tt0)=x(t0)  Identité x(t)δ(t) = x(t)  Translation x(t)δ(tt0) = x(tt0) x(tt1)δ(tt0) = x(tt1t0)  Changement de variable δ(a . t) = a1δ(t) en particulier avecδ(ω2=)1πfδ(t)   Remarque : Un signal physiquey(t) correspondant au passage dun état (1) vers un état (2) pourra être considéré comme un impulsion chaque fois que son temps de montéetm sera négligeable devant les autres temps mis en jeu dans le circuit. Il en est de même pour un échelon.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sinc(t) 1
t
1.4.6 Peigne de Dirac On appellepeigne de Dirac succession périodique uneδT(t) dimpulsions de Dirac.  +∞ δT(t)=δ(t- kT)  KT t 2T T T-KT -2T k-- T est la période du peigne. Cette suite est parfois appeléetrain d'impulsionsoufonction d'échantillonnage. Ce type de signal est principalement utilisé en échantillonnage .  1.4.7 Fonction sinus cardinal  sinc(t) = sinπ(tπt)   Cette fonction joue un rôle très important en traitement du signal.-3 -2 2 3 -1 1  Propriétés :  + =sinc(t) dt 1 -+sinc2 1 =(t) dt -  1.5 Représentation fréquentielle On a pour habitude de décrire les signaux en fonction de la variable temporellet notre car perception des phénomènes physiques nous y incite. En électronique, la connaissance des propriétés spectrales d'un signal est primordiale. Ainsi, on utilise souvent une représentation en fonction de la fréquence pour caractériser un signal ou un système. Les outils de traitement des signaux nous aident dans cette tâche.  Exemple : le support de transmission du téléphone à une bande passante de 3kHz alors que la bande passante des signaux audibles est de 20kHz. Ceci explique pourquoi un signal audio de haute qualité transmis par voie téléphonique sera perçu comme de mauvaise qualité par le récepteur.  
 
Chapitre 2
2 Traitement du signal analogique  2.1 Série de Fourier 2.1.1 Définition La décomposition ensérie de Fourier de décomposer un signal en somme de permet sinusoïdes. On utilise principalement les séries de Fourier dans le cas des signaux périodiques. Elles permettent ainsi de passer facilement du domaine temporel au domaine fréquentiel. Pour pouvoir être décomposable, un signal doit être à variations bornées (Dirichlet).  Pour tout signal s(t) réel où s(t) = s(t+T0), on peut écrire :  s(t) = S0+Ancos(nω0t)+Bnsin(nω0t)2π n=1  ω0=T0 avec S01=T0 (T0)s(t) dt An2T=s(t) cos(nω0t)dt  0 (t0) Bn2T=s(t) sin(nω0t)dt 0 (T0)
  Remarques : On appelle le signal de pulsationω0lefondamental. On appelle les signaux de pulsation n.ω0lesharmoniques de rang n. La valeur de S0représente lavaleur moyennede s(t).   Autre expression :  L'écriture précédentes des séries de Fourier présente en fait peu d'intérêt physique, en effet si la fonction f(t) subit une simple translation suivant l'axe des temps alors les coefficients Anet Bnseront modifiés. En conséquence, on cherche donc une nouvelle écriture des séries de Fourier dans laquelle la puissance est conservée après une translation suivant l'axe des temps et où cette translation apparaîtra sous la forme dun déphasage. Cette nouvelle écriture s'obtient en posant : =Φ ABnnC=CnnsinΦnn cos    ainsi, en remplaçant Anet Bndans :  s(t) = S0+Ancos(nω0t)+Bnsin(nω0t) n=1 s(t) = S0+CnsinΦncos(nω0t)+ cosΦnsin(nω0t) n=1  
 
 s(t) = S0+Cnsin(nω0t+Φn)avecΦn=BtcnaAran n=1n  2 2 2   + BC = An n n   !! Atte on !! nti Si lon intervertit la place des paramètres Bn et An (An devantsin B etn devantcos) dans la décomposition en série de Fourier, il ne faut pas oublier de les intervertir dans la définition deφnaussi.  2.1.2 Développement en termes complexes En introduisant la notation complexe de cos(nω0t) et sin(nω0t), il est possible d'obtenir une écriture complexe de la série de Fourier.  jnω0tjnω0t On posecos(nω0t)e=jnω0t+2ejnω0t etsin(nω0t)=2eje On obtient alors :  T0/ 2  s(t) =+Snejnω0tSn=1s(t)jnω0t  aveceTdt  -0 - T0/ 2  Les coefficients complexes Snsont reliés aux coefficients Anet Bnpar les relations suivantes : =AjB Snnn  2n>0 S = An+jBn - n2  Remarques : Dans les deux formes précédentes, chaque composante de fréquence était représentée par deux coefficients. L'écriture complexe ne fait apparaître qu'un seul coefficient Sn complexe mais qui comprend bien entendu un module et une phase.  2.1.3 Propriétés  Si s(t) est paire  Bn= 0 et Sn= S-n Si s(t) est impaire An= 0 et Sn= -S-n   2.2 Transformée de Fourier Cest une généralisation de la décomposition de série de Fourier à tous les signaux déterministes. Elle permet dobtenir une représentation en fréquence (représentationspectrale) de ces signaux. Elle exprime la répartition fréquentielle de lamplitude, de la phase et de lénergie (ou de la puissance) des signaux considérés.  2.2.1 Définition Soit s(t) un signal déterministe. Sa transformée de Fourier est un fonction, généralement complexe, de la variablefet définie par : +  S(f) = TF[s(t)]=s(t) ej2πftdt -
 
Si cette transformée existe, la transformée de Fourier inverse est donnée par :  +  s(t) = TF1[S(f)]=S(f) ej2πftd f -  Remarque : On appellespectredesle module de la transformée de Fourier des.  2.2.2 Propriétés   Linéarité Translation  Conjugaison Dérivation Dilatation Convolution  Dualité
α.s(t) +β.r(t) s(t- t0) e2 jπf0ts(t) s(t) dns(t)  dtn s(at)avec a0 s(t)r(t) s(t)ir(t) S(t)
α.S(f) +β.R(f) e2 jπf t0S(f) S(f- f0) S(-f) (j2πf)n )S( f 1 f S( ) a a S(f) R(f) i S(f)R(f) s(-f)
  Transformée de Fourier de Dirac :  s(t)TF  S(f) δ(t) 1 δ(t-τ)   e2 jπfτ e2 jπf0t   δ(f+ f0)  Egalité de Parceval : Pour un signal dénergie finie, lénergie du signal est identique dans les domaines temporel et fréquentiel.  +∞2+∞2  s(t) dt=S(f) df  −∞ −∞   
Soyez le premier à déposer un commentaire !

17/1000 caractères maximum.