Corrige Bac Mathematiques Specialite 2008 S
7 pages
Français

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Corrige Bac Mathematiques Specialite 2008 S

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
7 pages
Français
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Corrigé par Bankexam.fr Exercice 1 1) a) F est dérivable sur ]0 ;+∞ [ 1F'(x)= ln(x)+ x× −1= ln(x) xF est donc une primitive de la fonction logarithme népérien. eD’où I =[x ln(x)− x] 1I = e.ln(e)− e− (ln(1)−1)= 1 e2b) J = ln(x) dx ∫ 12u(x)= ln(x)Soit v'(x)= 12.ln(x)u'(x)=On a xv(x)= xLes fonctions u, u’, v et v’ sont continues sur ]0 ;+∞ [ ee 2.ln(x)2[ ]J = x.ln(x) − × x.dx 1 ∫ 1 xe2 2J = e.ln(e) − ln(1) − 2 ln(x).dx ∫ 1Donc J = e− 2I c) On a vu, I = 1, d’où J = e - 2. d) Sur l’intervalle [1 ; e] on a f (x)≥ g(x) eOn cherche donc [ f (x)− g(x)]dx ∫ 1e eD’où A= f (x).dx− g(x).dx= I − J = 1− e+ 2 ∫ ∫1 1A = 3 - e 2) On cherche x tel que la distance MN à l’abscisse x entre C et C soit maximale. f gSoit la fonction h(x) représentant la distance entre M et N. h(x) = f(x) - g(x). Via une étude de fonction, nous allons établir la pente de h(x) et ses extrémités. 2h(x)= ln(x)− ln(x) h est dérivable sur [1 ; e] 1 1 1− 2.ln(x)h'(x)= − 2.ln(x) = x x xx étant strictement positif, h’(x) a le signe et les zéros de 1− 2.ln(x) On cherche donc 1− 2.ln(x)= 0 1Soit : x= e pour obtenir h’(x) = 0. 1Donc 1− 2.ln(x)< 0 pour x> e Dessiner le tableau de variation de h(x). 1h(x) est maximal pour x= e 1Donc MN est maximal pour x= e 1 1 1 2et h( h( e )= ln( e )− ln( e ) = 0,5− 0,25= 0,25 1Et MN vaut 0,25 pour x= e . Exercice 2. 1) a) Les vecteurs AB(0;1;1) et AC(2;−2;2) ne sont pas colinéaires car non ...

Sujets

Informations

Publié par
Nombre de lectures 221
Langue Français

Extrait

Corrigé par Bankexam.fr  Exercice 1  1) a)F est dérivable sur ]0 ;+ ∞[ F' (x)=ln(x)+x×11=ln(x) 
F est donc une primitive de la fonction logarithme népérien. D’oùI=[xln(x)x]1e I=e.ln(e)e(ln(1)1)=1  b)J=1eln(x)2dx Soit( )=ln( )2  uv' (xx)=1x On avu('(xx))==x2.lnx(x) Les fonctions u, u’, v et v’ sont continues sur ]0 ;+ ∞[  J=x.ln(x)21e1e2.ln(x)×x.dx e J e e2 lnx dx =.ln( )2ln(1)21( ). DoncJ=e2I  c)On a vu, I = 1, d’où J = e - 2.  d)Sur l’intervalle [1 ; e] on af(x)g(x) e On cherche donc1[f(x)g(x)]dx ee= − = − D’oùA=1f(x).dx1g(x).dx I J1e+2 A = 3 - e  2)On cherche x tel que la distance MN à l’abscisse x entreCfetCgsoit maxim Soit la fonction h(x) représentant la distance entre M et N. h(x) = f(x) - g(x).  Via une étude de fonction, nous allons établir la pente de h(x) et ses extrémités.  h(x)=ln(x)ln(x)2 h est dérivable sur [1 ; e] h' (x)=12.ln(x1)=12.ln(x)
x étant strictement positif, h’(x) a le signe et les zéros de 12.ln(x) On cherche donc  
ale.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents