Fix Mahonian Calculus II: further statistics
13 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Fix Mahonian Calculus II: further statistics

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
13 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

2007/08/30 Fix-Mahonian Calculus, II: further statistics Dominique Foata and Guo-Niu Han ABSTRACT. Using classical transformations on the symmetric group and two transformations constructed in Fix-Mahonian Calculus I, we show that several multivariable statistics are equidistributed either with the triplet (fix,des,maj), or the pair (fix,maj), where “fix,” “des” and “maj” denote the number of fixed points, the number of descents and the major index, respectively. 1. Introduction First, recall the traditional notations for the q-ascending factorials (a; q)n := { 1, if n = 0; (1? a)(1? aq) · · · (1? aqn?1), if n ≥ 1; (a; q)∞ := ∏ n≥1 (1? aqn?1); and the q-exponential (see [GaRa90, chap. 1]) eq(u) = ∑ n≥0 un (q; q)n = 1(u; q)∞ . Furthermore, let (An(Y, t, q)) and (An(Y, q)) (n ≥ 0) be the sequences of polynomials respectively defined by the factorial generating functions ∑ n≥0 An(Y, t, q) un (t; q)n+1 := ∑ s≥0 ts ( 1? u s ∑ i=

  • n?m ∑

  • fix ?

  • can also

  • let ?

  • jj jj

  • bijections appear

  • group sn let


Informations

Publié par
Nombre de lectures 11
Langue English

Extrait

2007/08/30
Fix-Mahonian Calculus, II: further statistics Dominique Foata and Guo-Niu Han A BSTRACT . Using classical transformations on the symmetric group and two transformations constructed in Fix-Mahonian Calculus I, we show that several multivariable statistics are equidistributed either with the triplet (fix,des,maj), or the pair (fix,maj), where “fix,” “des” and “maj” denote the number of fixed points, the number of descents and the major index, respectively.
1. Introduction First, recall the traditional notations for the q -ascending factorials ( a ; q ) n := (11 a )(1 aq )    (1 aq n 1 ) iiff nn =10;; ( a ; q ) := Y (1 aq n 1 ); n 1 and the q -exponential (see [GaRa90, chap. 1]) e q ( u ) = n X 0 ( q ; uq n ) n =( u ;1 q ) Furthermore, let ( A n ( Y t q )) and ( A n ( Y q )) ( n 0) be the sequences of polynomials respectively defined by the factorial generating functions (1 1) n X 0 A n ( Y t q )( t ; qu ) nn +1 := s X 0 t s 1 u i = s X 0 q i 1 (( uuY ;; qq )) ss ++11 ; (1 2) n X 0 A n ( Y q )( q ; uq n ) n := 1 1 u q 1 (( uuY ;; qq )) Of course, (1.2) can be derived from (1.1) by letting the variable t tend to 1, so that A n ( Y q ) = A n ( Y 1  q ). The classical combinatorial interpretation for those classes of polynomials has been found by Gessel and Reutenauer [GeRe93] (see Theorem 1.1 below). For each permutation σ = σ (1) σ (2)    σ ( n ) from the symmetric group S n let i σ := σ 1 denote 1
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents