Explicit Shimura s conjecture for Sp3
15 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Explicit Shimura's conjecture for Sp3

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
15 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Explicit Shimura's conjecture for Sp3 Alexei Panchishkin & Kirill Vankov Prépublication de l'Institut Fourier n o 694 (2006) www-fourier.ujf-grenoble.fr/prepublications.html To dear Anatoli Nikolayevich Andrianov for his seventieth birthday Abstract We find an explicit solution in Shimura's conjecture for Sp3 (1963). The ex- istence of the solution was establised for any genus n by A.N. Andrianov. We develop formulas for the Satake spherical maps for Spn and Gln. Keywords: Symplectic group, Hecke's operators, spinor L-function. Résumé On trouve une solution explicite de la Conjecture de Shimura pour le groupe symplectique Sp3 (1963). On utilise le théorème général de rationalité établi par A.N. Andrianov pour tout genre n. On développe les formules pour les applications sphériques de Satake pour les groupes Spn et GLn. Mots-clés : Groupe symplectique, Opérateurs de Hecke, Fonction L spineur. 2000 Mathematics Subject Classification : 11F60.

  • solution explicite de la conjecture de shimura pour le groupe

  • opérateurs de hecke

  • formules pour les applications sphériques de satake pour les groupes spn

  • hecke operators


Sujets

Informations

Publié par
Nombre de lectures 19
Langue English

Extrait

Sp3
o
Sp3
n
Sp Glnn
L
Sp3
n
Sp GLnn
L
th?or?meFopourierapplicationsnctureancto694Mots-cl?s(2006)ewww-fourier.ujf-egrenoble.fr/prepublications.htmlblTeogroupdeardeAnatoli-function.Nikdeolapy(1963).eviclhAndrianoAn.drianopveforethissymplseve,enspinortiethOnbirthdsolutionaCyShimAbstractleWveutilisenddean?explicitparspogenreld?vutionforminleShimdeura'sourconjectureVforhishkinPGroupAlexeiOpforec(1963).onctionTheerators,ex-Pr?publicationistenceR?sum?oftrouvtheunesolutionexplicitewlaasonjeestablisededuraforourangroupysymplectiquegenousOnconjecturelebg?n?ralyrationaA.N.it?Andrianotav.iWA.N.evdevoureloputformankulasOnforeloppthelesSatakuleseoursphericalsmapssph?riquesforSatakura'spl'InstitutlesandesShimKirillExplicit&spineur..M:temectique,de?rateursSubHClassicationk11F60.Fke'st2000.aKeywheordsa:icsSymjectplectic:group,Heco
Sp3
Sp3
λ λ2 3ω(t(1,p ,p ))
Sp3
L G Q
∞ ∞X Y X
−s δ −δsλ (n)n = λ (p )p ,f f
n=1 p primesδ=0
f G
T(n) Sp N = 3N
λ (n) =λ (T(n))f f
Γ = Sp (Z) ⊂ SL (Z) N [p] =2N NN
pI = T(p,··· ,p) Sp2N N| {z }
2N
∞X
δ δD (X) = T(p )Xp
δ=0
1 , N = 1 21−T(p)X +p[p] X 1
= 2 21−p [p] X 2 2 2 2 2 3 3 6 41−T(p)X +{pT (p )+p(p +1)[p] }X −p [p] T(p)X +p [p] X1 2 2 2 N = 2
2T(p) T (p ) i = 1,··· ,N N+1i
2Z Sp T (p ) = [p]N N N
N = 3
E(X) F(X) X D (X) =E(X)/F(X)p
2 2T(p),T (p ),T (p ),[p]1 2 3
N > 2
idenuliagforthattheicitgenenratinggeneratingonthroughecial(Theoremsformoautomorphicscalar,papAand1o13Explicitseriesofof8HercAkforeHecop6eratorsInoftreatAAclassicalpmethoHecdandto2progroupducethe-functionsforifvforHecanItalgebraicthat(seeobtained[Hecekere],eande[Shi71],inTheoreme3.21),tgroup1seriespresengeneratingwthepliusestheoulaerndanforonandvethedegreespher-sucicaleratorspandgrougensymplecticmothegeneratorsforbmapura's1035y2.AoferatorseeratorsandopferstkexpHecolynomialsofgenopkseriesringgeneratingvtheopdythcasesymplecticHecroupkkstu,eparticular,andtheeb,Conopeeratorstsof.undertheentwhertheeimagesexWcoftlythecase.formPr?publication,formwethetheeolynomialseigenthevseriesspofifkaluesinofofde6(see8[Shh]p,ofTheorem22),,whereusl'InstitutofHecdularF,ourierthe,Siegelnekform694Shimura,conjectureShim6andAn(titeinkLetHecolvingto4ccordingtheAk.ring1.1Octobre2.1).)isareothethe200timefortheseeratorlgeneratorspofaretheforcorrespusondingHecfor.computationSp3
∞X
δ δD (X) = T(p )X =E(X)/F(X)p
δ=0
f L
Sp N = 2N
L Sp3
Ω
P(v) = Ω(E(v))
P(v) =P (x , x , x , x , v) =3 0 1 2 3

2sym (p +p+1)sym sym2,1,1 1,1,1 1,1,0 2 2= 1− + + x v02p p p
p+1 3 3+ (sym +sym +sym +sym ) x v2,2,2 2,2,1 2,1,1 1,1,1 02p

2sym (p +p+1)sym sym3,2,2 2,2,2 2,2,1 4 4− + + x v02 3 2p p p
sym3,3,3 6 6+ x v .03p
N = 4
symi ,i ,i1 2 3
x x x1 2 3
X
i i i1 2 3sym = σ(x x x ),i ,i ,i1 2 3 1 2 3
i i i1 2 3σ∈S /Stab(x x x )n 1 2 3
i i i1 2 3x x x1 2 3
i i i1 2 3Stab(x x x ) i ≥ i ≥ i ≥ 01 2 31 2 3
i +i +i S =S1 2 3 n 3
n n = 3
sym = 10,0,0
sym =x +x +x1,0,0 1 2 3
sym =x x +x x +x x1,1,0 1 2 1 3 2 3
sym =x x x1,1,1 1 2 3
4 3 2 4 2 3 3 4 2 3 2 4 2 4 3 2 3 4sym =x x x +x x x +x x x +x x x +x x x +x x x .4,3,2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
symi i i1 2 3
euationhishkinofulatheopspinorolynomial-functionwon3wkobtainusingtheSatakfolloowing[PformoasofulaofourierotedindicatedolynomialsrtsthethepaSp4].atyolynomialcase:A.whereKtheShimsumwledgemationofofapwermaluesutedofmonomialslinkthweINTELtalkconuationsymmetricofsphericaltheofrstnotationofthisauthor,inseea[Ptreated-functionisisa]).normalized(seeusinganctheA].stabilizerVon,conjecturewhicexpliciththewgeneratingankasgivdoneabbonstructingtheyeigenA.N.AnthedrianoeciencHecfor.tinneededMancomputationstotalthis9)pall9.50coSymmetricecienananalytictsofarepequalthetorepresen1eandthehuseroaconapptheAnform4].In[An7[VevWnkseeK.V,b.asThebasedtotalresultdegreeTheoaVfalsotheerepPolynomialOuris&caseaGRFthe.inankvvdetails).Explicitrura'sy:foraThe.knoHereofwsumwingthefolloseriestheHecineiseratorstheessymmetricrelgrouptithatnactsetnaturallyeenonHecpeolynomialsvinandconstructedFvcoariables,tswhereaokfeigenformandThisinisouforrycase.presenFinorarticleexamperelerformedeMaple3(IBMSectionNT).,p(seeconstructingmapanalyticariablesconvthreetin(uptosodegreethwatcomputed(1)o
t
Y
i i i i i i i i i1 2 3 1 2 3 1 3 2(1+tx x x ) = (1+tx x x )(1+tx x x )1 2 3 1 2 3σ(1) σ(2) σ(3)
σ∈S3
i i i i i i i i i i i i2 1 3 2 3 1 3 1 2 3 2 1×(1+tx x x )(1+tx x x )(1+tx x x )(1+tx x x ),1 2 3 1 2 3 1 2 3 1 2 3
i = 0,...,6 i = 0,...,i i = 0,...,i1 2 1 3 2
Spn
n + tS = S = GSp (Q) ={M ∈ M (Q) | MJ M =μ(M)J ,μ(M)> 0} ,2n n nn

0 In nJ = .n
−I 0n n
Γ = Sp (Z)n
(M) = ΓMΓ⊂ S,
X
T(a) = (M),
M∈SD (a)n
M
SD (a) ={diag(d ,··· ,d ;e ,··· ,e ) | d |d ,d |e ,e |e ,d e =a}.n 1 n 1 n i i+1 n n i+1 i i i
T(d ,··· ,d ;e ,··· ,e )) = (diag(d ,··· ,d ;e ,··· ,e )).1 n 1 n 1 n 1 n
T(p) =T(1,··· ,1,p,··· ,p),
| {z } | {z }
n n
2 2 2T (p ) =T(1,··· ,1,p,··· ,p,p ,··· ,p ,p,··· ,p), i = 1,2,··· ,n.i | {z } | {z } | {z } | {z }
n−i i n−i i
Ω
n nY X
Ω(T(p)) =x (1+x ) = x s (x ,x ,··· ,x ),0 i 0 j 1 2 n
i=0 j=0
X
2 b(a+b+1) 2Ω(T (p )) = p sm (a−i,a)x ω(π ).i p a,b0
a+b≤n,a≥i
[An87].Hecoffunction200thesimilitudes(2)dewhereeratorswherevisandnormalized,bnofetermsHec(4)eratorsinparticulardirectlyeresultthe,p.ourgeneratingstateFPr?publicationyusingwhereeciendividingeoutandforp.4the(7)enotation(9)thesymplecticusepsitunsiLetof(5)ateratorssymplecticthroughmatricesthel'InstitutfolloourierLet694t.Octobrefor6ecienthcocoleadingttsopikFtheor[An87]):the149Siegel(seemoopdularegroupha(8)wThenIntheir(6)imagescosetsb(3)yositivtheofk.groupconsiderofedsphericalthemaperwingofareCogivdoubleen142atthep.159denedofgroupopThentheintegral[An87]:us(10)runsSp3
X
s (x ,...,x ) = x ···xi 1 n α α1 i
1≤α <···<α ≤n1 i
i symi ,i ,i1 2 3 
In−a−b
 π = pI GLa,b a n
2p Ib
sm (r,a) r ap
Fp
φ (p)a
sm (r,a) = sm (r,r) ,p p
φ (p)φ (p)r a−r
2 rφ (x) = (x−1)(x −1)·...·(x −1) r ≥ 1, φ (x) = 1.r 0
n = 3
Ω(T(p)) =x (1+sym +sym +sym ) ,0 1,0,0 1,1,0 1,1,1
2 2 2 x (p −1) x2 0 0Ω(T (p )) = sym +sym + sym +sym +sym1 2,1,1 1,1,0 2,2,1 2,1,0 1,0,03p p
2 2x (p−1)(2p +4p+1)0+ sym ,1,1,14p
2 0 2 4 2 0 2Ω(T (p )) =p sm (0,2)x ω(π )+p sm (0,2)x ω(π )+p sm (1,3)x ω(π )2 p 2,0 p 2,1 p 3,00 0 0
2 4 2 2 2=x ω(t(1,p,p))+p x ω(t(p,p,p ))+sm (1,3)x ω(t(p,p,p))p0 0 0
2 2 2x x (p−1)(p +p+1)0 0= sym +sym + sym ,1,1,0 2,1,1 1,1,13 6p p
2 2x x x x x1 2 32 0 2 0 0Ω(T (p )) = Ω([p] ) =p sm (0,3)x ω(π ) = = sym ,3 3 p 3,0 1,1,10 6 6p p
2a = 3,r = 1 sm (1,3) = (p−1)(p +p+1)p
Q (v) Z(s)3
Q (v) =Q (x ,x ,x ,x ,v)3 3 0 1 2 3
= (1−x v)(1−x x v)(1−x x v)(1−x x v)0 0 1 0 2 0 3
×(1−x x x v)(1−x x x v)(1−x x x v)(1−x x x x v).0 1 2 0 1 3 0 2 3 0 1 2 3
2 2q ∈Q[T(p),T (p ),··· ,T (p )]j 1 n
n2X
jΩ(q )v =Q (v) = (1−x v)(1−x x v)(1−x x v)·...·(1−x x x ·...·x v).j n 0 0 1 0 2 0 1 2 n
j=0
theConsidereld.bimplying[An87]:withco(11)rankyis(14)usolyn,ofthatthesesymmetricecauvb(13)A.aluatedPandanchahishkinerator&dKsuc.denotesVumank(12)omatricesvordererExplicitzetaShimecienura'sevconjecturep.205forwith5genHerethree:isetheopFforolloanwingthetheecienprohoftatthepp.159nofdening[An87],erthereofexisttheHecofkandeoopspinoreratorstheth.elemenThistarycosymtmetricfunctionpofolynomialat(dierenoft(11)thenforpreviouslyInomialparticular,casewiseavHecinkedenedthat),theequalito
P∞ δ δR (v) = T(p )v ∈L [[v]] Q (v) =n nZδ=0P n2 jq v Lj Zj=0
2 2P (v)∈Q[T(p),T (p ),··· ,T (p ),v]n 1 n
∞X P (v)nδ δR (v) = T(p )v = ,n
Q (v)n
δ=0
P n2 j nQ (v) = q v 2 P (v) =n j nj=0
n2 −2X
j nu v 2 −2j
j=0
n−2 2 n−1 nn−1 n(n+1)2 −n 2 −1 2 −2(−1) p [p] v
2[p] = (pI ) =T (p )n 2n n
−n(n+1)/2 2Ω([p] ) =p x x ·...·xn 1 n0
n = 3
∞X P (v)3δ δR (v) = T(p )v = ,3 Q (v)3
δ=0

2 2 4 2 2 2 4 3P (v) = 1− p T (p )+(p +p +1)p [p] v +(p+1)p T(p)[p] v3 2 3 3

5 2 2 4 2 2 2 4 15 3 6−p p T (p )[p] +(p +p +1)p [p] v +p [p] v ∈L [v].2 3 Z3 3
L
P (v)3
2P (v) T (p )n 1
Sp3
D (X) = E(X)/F(X)p
n nE(X) F(X) X 2 − 2 2
bringap.inItl'InstitutwisasSieestablished(16)bresultyasA.N.Andrianolowingthatemsopn70]),1.3Adep[Shiminsolution(3.4.48)altaelemen,theandv,explicitthatctheregenusexistdp[Maa76]othatlLety.no

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents