GAGLIARDO NIRENBERG INEQUALITIES ON MANIFOLDS
14 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

GAGLIARDO NIRENBERG INEQUALITIES ON MANIFOLDS

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
14 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

GAGLIARDO-NIRENBERG INEQUALITIES ON MANIFOLDS NADINE BADR Abstract. We prove Gagliardo-Nirenberg inequalities on some classes of manifolds, Lie groups and graphs. Contents 1. Introduction 1 2. Preliminaries 5 2.1. Besov and Morrey spaces 5 2.2. Sobolev spaces on Riemannian manifolds 6 2.3. Doubling property and Poincare inequalities 7 3. Ledoux's and Sobolev inequalities 8 3.1. The classical Sobolev inequality 9 3.2. Sobolev inequalities for Lorentz spaces 10 4. Proof of Theorem 1.1, 1.6, 1.8 and 1.9 11 References 13 1. Introduction Cohen-Meyer-Oru [5], Cohen-Devore-Petrushev-Xu [4], proved the following Gagliardo- Nirenberg type inequality (1.1) ?f?1? ≤ C? |?f | ? n?1 n 1 ?f? 1 n B?(n?1)∞,∞ for all f ? W 11 (R n) (1? = nn?1). The proof of (1.1) is involved and based on wavelet decompositions, weak type (1,1) estimates and interpolation results. Using a simple method relying on weak type estimates and pseudo-Poincare in- equalities, Ledoux [14] obtained the following extension of (1.1). He proved that for 1 ≤ p < l <∞ and for every f ? W 1p (R n) (1.2) ?f?l ≤ C? |?f | ? ? p?f? 1?? B ? ??1 ∞,∞ where ? = pl and C > 0 only depends on l, p and n.

  • cohen-devore-petrushev-xu

  • gagliardo-nirenberg inequalities

  • haar measure

  • riemannian manifold

  • lie group equipped

  • dµ ≤

  • ledoux

  • linear elliptic

  • lie group

  • inequality


Sujets

Informations

Publié par
Nombre de lectures 17
Langue English

Extrait

GAGLIARDO-NIRENBERG INEQUALITIES ON MANIFOLDS
NADINE BADR Abstract. We prove Gagliardo-Nirenberg inequalities on some classes of manifolds, Lie groups and graphs.
Contents
1. Introduction 2. Preliminaries 2.1. Besov and Morrey spaces 2.2. Sobolev spaces on Riemannian manifolds 2.3.DoublingpropertyandPoincare´inequalities 3. Ledoux’s and Sobolev inequalities 3.1. The classical Sobolev inequality 3.2. Sobolev inequalities for Lorentz spaces 4. Proof of Theorem 1.1, 1.6, 1.8 and 1.9 References
1 5 5 6 7 8 9 10 11 13
1. Introduction Cohen-Meyer-Oru [5], Cohen-Devore-Petrushev-Xu [4], proved the following Gagliardo-Nirenberg type inequality n 1 1 (1.1) k f k 1 C k |r f | k 1 n k f k n B ( ,n ∞− 1) for all f W 11 ( R n ) (1 = n n 1 ). The proof of (1.1) is involved and based on wavelet decompositions, weak type (1,1) estimates and interpolation results. Usingasimplemethodrelyingonweaktypeestimatesandpseudo-Poincare´in-equalities, Ledoux [14] obtained the following extension of (1.1). He proved that for 1 p < l < and for every f W p 1 ( R n ) (1.2 θ k f k 1 θ θ ) k f k l C k |r f | k pB θ 1 , where θ = lp and C > 0 only depends on l, p and n . In the same paper, he extended (1.2) to the case of Riemannian manifolds. If p = 2 he observed that (1.2) holds without any assumption on M . If p 6 = 2 he assumed that the Ricci curvature is non-negative and obtained (1.2) with C > 0 only depending on l, p when 1 p 2 and on l, p and n when 2 < p < . 2000 Mathematics Subject Classification. 46E30, 26D10, 46B70. Key words and phrases. Gagliardo, Nirenberg, Symmetrization, Sobolev spaces, Interpolation.
1
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents