PUB IRMA LILLE Vol No VII
26 pages

PUB IRMA LILLE Vol No VII

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
26 pages
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Niveau: Supérieur, Master, Bac+5
PUB. IRMA, LILLE 2005 Vol. 64, No VII Hölderian random functions? Antoine Ayache Philippe Heinrich Laurence Marsalle Charles Suquet Laboratoire P. Painlevé, CNRS UMR 8524, Bât. M2, Université Lille 1, Cité Scientifique 59655 Villeneuve d'Ascq Cedex, France. Abstract Hölder regularity which plays a key rôle in fractal geometry raises an increasing interest in probability and statistics. In this paper we discuss various aspects of local and global regularity for stochastic processes and random fields. As a main result we show the invariability of the pointwise Hölder exponent of a continuous and nowhere differentiable random field which has stationary increments and satisfies a zero-one law. We also survey some recent uses of Hölder spaces in limit theorems for stochastic processes and statistics. Résumé La régularité hölderienne qui joue un rôle clé en géométrie fractale suscite un intérêt grandissant en porbabilités et statistique. Dans cette contribution nous discutons divers aspects de la régularité hölderienne lo- cale et globale pour les processus stochastiques et les champs aléatoires. Notre résultat principal est la constance temporelle et déterministe de l'exposant de Hölder ponctuel d'un champ aléatoire continu et nulle part différentiable, à accroissements indépendants et vérifiant une loi du zéro- un. Nous donnons aussi un panorama de quelques utilisations récentes des espaces de Hölder dans les théorèmes limites pour les processus stochas- tiques et en statistique.

  • when ?n

  • hölder spaces

  • self-similarity param- eters

  • bounded function

  • tional central

  • banach space

  • hölder exponent

  • continuous functions

  • limit theorems


Sujets

Informations

Publié par
Nombre de lectures 97

Extrait

PUB.IRMoA,LILLE2005Vol.64,NVIIHölderianrandomfunctionsAntoineAyachePhilippeHeinrichLaurenceMarsalleCharlesSuquetLaboratoireP.Painlevé,CNRSUMR8524,Bât.M2,UniversitéLille1,CitéScientifique59655Villeneuved’AscqCedex,France.Antoine.Ayache@math.univ-lille1.frAbstractHölderregularitywhichplaysakeyrôleinfractalgeometryraisesanincreasinginterestinprobabilityandstatistics.Inthispaperwediscussvariousaspectsoflocalandglobalregularityforstochasticprocessesandrandomfields.AsamainresultweshowtheinvariabilityofthepointwiseHölderexponentofacontinuousandnowheredifferentiablerandomfieldwhichhasstationaryincrementsandsatisfiesazero-onelaw.WealsosurveysomerecentusesofHölderspacesinlimittheoremsforstochasticprocessesandstatistics.RésuméLarégularitéhölderiennequijoueunrôlecléengéométriefractalesusciteunintérêtgrandissantenporbabilitésetstatistique.Danscettecontributionnousdiscutonsdiversaspectsdelarégularitéhölderiennelo-caleetglobalepourlesprocessusstochastiquesetleschampsaléatoires.Notrerésultatprincipalestlaconstancetemporelleetdéterministedel’exposantdeHölderponctueld’unchampaléatoirecontinuetnullepartdifférentiable,àaccroissementsindépendantsetvérifiantuneloiduzéro-un.NousdonnonsaussiunpanoramadequelquesutilisationsrécentesdesespacesdeHölderdanslesthéorèmeslimitespourlesprocessusstochas-tiquesetenstatistique.Keywords:changepointdetection,empiricalprocess,epidemicmodel,func-tionalcentrallimittheorem,Hölderspace,localHölderexponent,multifrac-tionalBrownianmotion,pointwiseHölderexponent,self-normalization,zero-onelaw.MathematicsSubjectClassifications(2000):Primary60G17,Secondary60-02,60B12,60F17,60F20,62G10.Preprint
3IIV1IntroductionTheconceptofHölderregularityisquiteimportantinfractalgeometry,signalandimageprocessing,finance,statisticsandtelecommunications[8].Hölderexponentshavebeenusedfrequentlytomeasuretheroughnessofacurveorofasurface[10];applicationsinsignalandimageprocessingarenumerousandincludeinterpolation,segmentation[26]anddenoising[27].Theyarecloselyrelatedtootherfractalindicessuchasfractaldimensions,self-similarityparam-etersandmultifractalspectra(seee.g.[12,18,44,45]).Ontheotherhand,theHölderspacesprovideafunctionalframeworkforlimittheoremsinthetheoryofstochasticprocesses.TheuseofHöldertopologiesleadstomorepreciseresultsthantheclassicalframeworkofcontinuousfunctionsspaces.ThispaperdiscussbothusesofHölderregularityinthestudyofstochasticprocesses.1.1HölderexponentsWhenlookingforrandomfieldsmodelingsomeroughness,itisquitenaturaltoinvestigatethepointwiseHölderregularityofvariousextensionsofthewellknownBrownianmotion.Recallthat{BH(t),tRd},thefractionalBrownianmotion(fBm)ofHurstparameterH(0,1)isthereal-valued,self-similarandstationaryincrementscontinuousGaussianfielddefinedforeverytRdastheWienerintegralZeit.ξ1BH(t)=d|ξ|H+d/2dWc(ξ),(1)RwheredWcisacomplex-valuedwhitenoise.ThisfieldwasfirstintroducedbyKolmogorov[20]forgeneratingGaussian“spirals”inaHilbertspace.Later,theseminalarticleofMandelbrotandVanNess[30]emphasizeditsrelevanceforthemodelingofnaturalphenomena(hydrology,finance,...)andthusgreatlycontributedtomakeitpopular.Sincethen,thisfieldturnsouttobeaverypowerfultoolinmodeling.ThemonographofDoukhan,OppenheimandTaqqu[11]offersasystematictreatmentoffBm,aswellasanoverviewofdifferentareasofapplications.Thefield{BH(t),tRd}isanaturalgeneralizationoftheWienerprocess({B1/2(t),tR}isaWienerprocess)andsharesmanynicepropertieswithit.However,oneofthemainadvantagesoffBmwithrespecttoWienerprocessisthatitsincrementsarecorrelatedandcanevendisplaylongrangedepen-dence.Still,fBmisnotalwaysarealisticmodel.Indeed,itspointwiseHölderexponentremainsconstantallalongitstrajectorywhichcanbeaseriousdraw-backinseveralapplications(seeforexample[28,2,3,4]).Generallyspeaking,amultifractionalfieldisafieldwithcontinuoustrajectoriesthatextendsfBmandwhosepointwiseHölderexponentisallowedtochangefromonepointtoanother.Recallthat{αX(t),tT}thepointwiseHölderexponentofacontin-uousandnowheredifferentiablefield{X(t),tT}isdefinedforeverytT
IV4IsaonαX(t)=supα;limsup|X(t+h)X(t)|=0.(2)h0|h|αAparadigmaticexampleofamultifractionalfieldismultifractionalBrownianmotion(mBm).Itwasintroducedindependentlyin[28]andin[7]butthedenominationmultifractionalBrownianmotionisduetoLévyVéhel.MBmisobtainedbysubstitutingtotheHurstparameterintheharmonizablerep-resentation(1)offBmacontinuousfunctiont7→H(t)withvaluesin(0,1).WhenthefunctionH()issmoothenough(typicallywhenitisaC1function),thepointwiseHölderexponentofmBmsatisfiesforanytT,almostsurelyαmBm(t)=H(t),whichmeansthatitcanchangefromonepointtoanother.In[5]ithasbeenprovedthatwhentheincrementsofanyorderofmBmarestationarythefunctionH()isconstant(i.e.mBmreducestoanfBm).More-over,noexampleofamultifractionalfieldwithstationaryincrementshasbeenconstructedyet.Thisiswhyitseemsnaturaltowonderwhetherthereexistsacontinuous,nowheredifferentiableandstationaryincrementsfield{X(t),tT}whosepointwiseHölderexponentchangesfromonepointtoanother.InSec-tion2weshowthattheanswerisnegativewhenweimposeinadditionto{X(t),tT}tosatisfyazero-onelaw.1.2HölderspacesasafunctionalframeworkInmanysituationssomeuniformcontrolontheregularityisneeded.Forin-stanceletusconsiderthefollowingstatisticalproblem.Havingobservedtheran-domvariablesX1,...,Xn,weneedtotestthenullhypothesisthatX1,...,Xnhavethesameexpectationµ0againstthealternativeofachangefromµ0toµ1betweentheunknowninstantskandmwithgoingbacktoµ0afterm.Thisisknownastheepidemicmodel.Itisquitenatural,see[41]forastepbystepexplanation,touseheretheweightedteststatistics S(j)S(i)S(n)(tjti) UI(n,a):=1im<ajxn|tt|aijPwhereS(n):=1inXi,ti:=i/nand0<a<1/2.Theasymptoticdistri-butionofUI(n,a)followsfromtheweakconvergenceofapartialsumsprocessξninsomeHölderspaceHa(aprecisedefinitionofHölderspacesisgiveninSection3).Thepracticalinterestoftheexponentahereliesinthesensitivityofthetest.DetectingtheshortestepidemicsrequirestotakethebiggestpossibleaandthisleadstoinvestigateweakconvergenceofξninHa.InSection4wesurveysomerecentadvancesintheasymptotictheoryofsequencesofstochasticprocessesconsideredasrandomelementsinsomeHölderspaceH.Theissuesaddressedmaybeclassifiedalongthefollowingtwomaindirections.A)Classicallimittheoremsfornormalizedsumsbn1Snofindependentran-domelementsXiinH:lawsoflargenumber,centrallimittheorems,seee.g.[31],[32],[35],[40].
IIV5B)WeakconvergenceinHofsequencesofrandomelementsξnoftheformt7−→ξn(t)=Gn(X1,...,Xn,t),whereX1,...,Xnisusuallyasampleofi.i.d.randomvariablesorrandomelementsinsomeBanachspaceandGnafunctionsmoothenoughtoensurethemembershipinHofξn.ProblemA)isdirectlyconnectedtotheProbabilityTheoryinBanachSpaces.Itiswellknowninthisareathatthelimittheoremsforasequenceofrandomelementsbn1SninsomeseparableBanachspaceBinvolvethegeometryofB.Forinstance,iftheXi’sarei.i.d.withnullexpectation,thenthesquareinte-grabilityofkX1kgivestheasymptoticnormalityofn1/2SnwhenBisoftype2(e.g.BisaHilbertspaceoraLpspacewith2p<).ButifB=c0,theclassicalspaceofsequencesconvergingto0,wecanfindaboundedrandomele-mentX1inc0whichdoesnotsatisfytheCLT,i.e.thecorrespondingsequencen1/2SnisnotasymptoticallyGaussian.ThismakeshopelesscharacterizingtheCLTinageneralBintermsofintegrabilitypropertiesofX1only.BecausealltheHölderspacesHunderconsiderationherecontainasubspaceisomorphictoc0andareconcretefunctionspaces,theyprovideaninterestingframeworktostudytheasymptoticbehaviorofbn1SninacontextwherethegeometryoftheBanachspaceis“bad”.ProblemB)ismoreorientedtostatisticalapplications.Indeed,theweakDconvergenceξn−→ξinsomefunctionspaceEmeansEg(ξn)−−→Eg(ξ),(3)nforeverycontinuousandboundedfunctiong:ER.Bythecontinuousmappingtheorem,thisimpliesthatforeveryfunctionalf:ER,continuouswithrespecttothestrongtopologyofE,f(ξn)n−−f(ξ),indistribution.(4)TheclassicalfunctionalframeworksforsuchconvergenceξnDξaretheSko-rohodspacewhenξnhasjumpsandsomespaceCofcontinuousfunctionswhenξnhascontinuouspaths.Theinterestinreplacing,wheneverpossible,CbyHisthatthisstrenghteningofthetopologyonthepathsspaceenlargesthesetofcontinuousfunctionalsf.Usually,therandomfunctionsξnsharemoresmoothnessthantheirweaklimitξ.ForinstanceintheHölderianversionoftheinvarianceprincipleforpartialsumsprocesses,thepathsofξnarerandompolygonallines,whileξisaBrownianmotion.Insuchcasestheglobalsmooth-nessofξputanaturalboundinthechoiceofthe“best”spaceH.TheexampleoftheBrownianmotionWshowsherethattheclassicalladderofHölderspacesHaisnotrichenough.IndeedHaisthespaceoffunctionsxwhoseincrementsx(t+h)x(t),h0areO(ha)uniformlyint.DuetoLévy’sresultonW’smodulusofuniformcontinuity[25,Th.52,2],itseemsdesirabletoconsideralso
6IIVthespacesoffunctionsxsuchthatx(t+h)x(t)=Oh1/2lnb(1/h).Inmoregenerality,thisleadstointroducealadderofHölderspacesHρ,wheremember-shipofxinHρisequivalenttotheuniformestimatex(t+h)x(t)=O(ρ(h)),forsomeweightfunctionρ.ThisraisesathirdproblemwhichinsomesenseisalsopreliminarytoProb-lemA):C)GivenastochasticprocessX={X(t),tT},findconditionsintermsofitsfinitedimensionaldistributionssothatXadmitsaversionwithpathsintheHölderspaceHρ.2CriticalExponents2.1Zero-OnelawsandExponentsLetX={X(t),tT}bearealprocesswith,say,separableandmetrictimesetT.WecanviewXasarandomelementinRTendowedwithproductσ-fieldB(R)TwhereB(R)denotestheBorelσ-fieldofR.Thekindofzero-onelawweshallfocusoncanbestatedasfollows:Definition1.WewillsaythatXsatisfiesazero-onelawifforeachmeasurablelinearsubspaceVofRT,P(XV)=0or1.(5)ItisknownthatGaussian,stableandsomeinfinitelydivisible(withoutGaussiancomponent)processessatisfy(5).Theirassociatedfinite-orderchaosprocessesdoaswell.Wereferthereadertothepaper[43]byRosinskiandSamorodnitskyandthereferencestherein.Oneclassicalapplicationofsuchazero-onelawistoestablishregularitypropertiesofpaths.Forinstance,neglect-ingmeasurabilityquestionsatfirstglance,Vcouldbe:1.thespaceofboundedfunctionsonT,2.thespaceofcontinuousfunctionsonT,ifTiscompact,3.thespaceofuniformlycontinuousfunctionsonT,4.thespaceofLipschitzfunctionsonT,5.thespaceofa-HölderianfunctionsonT,6.thespaceofabsolutelycontinuousfunctionsonT,ifTisanintervalinR.IfforsomecountabledensesubsetSofT,wehavePtT,(sn)n1S,snt,X(sn)X(t)=1,thenthemeasurabilityof{XV},fortheV’sdisplayedabove,canbeestab-lishedprovidedtheunderlyingprobabilityspace,F,P)iscomplete(ascan
V7IIbealwaysassumed).Indeed,theevents{XV}maythenbeexpressed,uptonegligeablesets,asonesinvolvingonlytherestrictionofXtoS.Thefollowingresultillustrateshowusefulthiszero-onelawcanbe.Theorem1.AssumethatTisanopensubsetofRd(dN).LetX={X(t),tT}beacontinuous,nowheredifferentiableprocesssatisfyingthezero-onelaw(5).Then,foralltT,thepointwiseHölderexponentofXattisalmostsurelydeterministic.Inotherwords,foralltT,thereexistsanumberH(t)[0,1]suchthatPαX(t)=H(t)=1.Proof.ThisresulthasalreadybeenestablishedbyAyacheandTaqquforGaus-sianprocesses,see[6].Theirproofisbasedonthesamekey-argument(zero-onelaw),buttheonewegivehereusesitmoredirectlyandexplicitely.WesetS=Qd.LettbesomearbitrarypointoftheopensetTandchooseη>0suchthattheballB(t,η)beinT.SinceXhasalmostallcontinuousandnowheredifferentiablepathsonT,weknowthatαX(t,ω)belongsto[0,1]foralmostallωΩ.Wecanthusdefine u(t):=supuR;P(αX(t)u)=0, u(t):=infuR;P(αX(t)u)=1.Bydefinition,theinterval[u(t),u(t)]isthesupportofthedistributionfunctionofαX(t).ToprovethatαX(t)isalmostsurelydeterministic,weonlyneedtocheckthatu(t)u(t).Letu<u(t),wethushaveP(αX(t)>u)>0.Ontheevent{αX(t)>u},wehavelimsuph0|h|u|X(t+h)X(t)|=0whichimpliesthath7→hu(X(t+h)X(t))isboundedonthecountableboundedsubset{hS;|h|}.Itfollows,byinclusion,that0<PαX(t)>uPsup|X(t+h)X(t)|<.|h||h|uShWeshallprovethatthislastprobabilityisequalto1,usingthezero-onelaw(5).Tothisend,notethattheevent|X(t+h)X(t)|<pus|h||h|uShcanclearlybewritten{XV}forsomelinearsubspaceV,whichisB(R)T-measurablesinceitinvolvesonlycountablemanyprojectionsx7→x(t)fromRTtoR.Thezero-onelawensuresconsequentlythat! Psup|X(t+h)X(t)|<=1,|h||h|u
IIV8whereweskippedtherestrictionhSinthesupremumthankstothecontinuityofX.Butnow,asimpleinclusionofeventsyieldsPlimsup|X(t+h)X(t)|<=1,h0|h|uwhichcanbereadasP(uαX(t))=1or,equivalently,asP(αX(t)<u)=0.Thismeansthatuu(t)whichgivesu(t)u(t),sinceuisarbitraryin(−∞,u(t)).Besides,bydefinitionu(t)u(t),whenceu(t)=u(t).WecallH(t)thiscommonvalue.WejusthaveprovedthatthedistributionfunctionofαX(t)jumpsfrom0to1atH(t)inotherwordsP(αX(t)=H(t))=1.Remark1.Otherexponentsmaybedefinedtocharacterizetheregularityofafunction,forinstancethelocalHölderexponentattimet)(α˜X(t)=supα;η>0sup|X(u)X(v)|<,αu,vB(t,η)|uv|whereB(t,η)denotestheopenballcenteredattandofradiusη,andtheglobalHölderexponentonacompactsetKT|X(u)X(v)|βX=supβ;u,svupK|uv|β<.WhenXisacontinuousnowheredifferentiableprocess,satisfyingazero-onelaw,thesamepropertyasinTheorem1holds.Moreprecisely,forallcompactsubsetKofT,βXisalmostsurelydeterministic,andforalltT,α˜X(t)isalmostsurelydeterministic.TheproofofbothresultsisthesameasforTheorem1,theonlychangeconcernsthemeasurablesubspaceofRTinvolvedinthezero-onelaw.Inthecaseofα˜X(t),weuse)(V˜:=[xRT;sup|x(u)x(v)|<,nNu,vB(t,1/n)S|uv|αwhereSisacountabledensesubsetofT,andinthecaseofβX,wedefineW:=xRT;sup|x(u)x(v)|<.u,vKS|uv|α2.2ProcesseswithStationaryIncrementsThroughoutallthisparagraph,T,thesetoftimes,canbetakentobeequaltoanynon-emptyopensubsetofRd(dN).LetX={X(t),tT}denoteacontinuousnowheredifferentiableprocess,forwhichazero-onelawholds(see(5)).ThankstoSubsection2.1,weknowthatthepointwiseHölderexponentofXattisdeterministic,butdependsont.Now,weassumebesidesthatXhasstationaryincrements.Thismeansthat
9IIV(X(s2)X(s1),...,X(sn)X(s1))and(X(s2+t)X(s1+t),...,X(sn+t)X(s1+t))areidenticallydistributedforanys1,...,sn,s1+t,...,sn+tTandanyintegern2.SincethepointwiseHölderexponentisdefinedbymeansofincrements,wecanshowthatitdoesn’tdependanymoreont.Theorem2.LetX={X(t),tT}beacontinuousnowheredifferentiableprocess,withstationaryincrements.Weassumethatazero-onelawholdsforX.ThenthereexistsH[0,1]suchthatforalltTP(αX(t)=H)=1.Proof.Theschemeoftheproofisthefollowing:sinceTisanon-emptyset,itcontainsatleastoneelement,thatwewilldenote0forthesakeofsimplicity.UsinganequivalentdefinitionofthepointwiseHölderexponent,weprovethatαX(t)andαX(0)havethesamelaw,foralltT.ThankstoTheorem1,weknowthatthereexistsH=H(0)[0,1]suchthatthelawofαX(0)isaDiracmassatpointH.Consequently,foralltT,thelawofαX(t)isaDiracmassatpointH.AsintheproofofTheorem1,SdenotesacountabledensesubsetofT.LettbeafixedpointofT.ItcanbeeasilyshownthatthepointwiseHölderexponentofXattisgivenby:αX(t)=liminflog|X(t+h)X(t)|,h0log|h|withtheusualconventionthatlog0=−∞.ThisdefinitionreadsasαX(t)=supinflog|X(t+h)X(t)|R>0|h|<Rlog|h|log|X(t+h)X(t)|=nsuNp|h|i<nf1/nlog|h|,ShthelastequalitycomingfromthemonotonicityoftheinfimumwithrespecttoRandfromthecontinuityofthepathsofX.ToobtaintheidentityinlawbetweenαX(t)andαX(0),weintroduceanincreasingsequence(Sk)k1offinitesetssuchthatk1Sk=S.Then,notethatforuR[\\{αX(t)u}=↓↓↑minlog|X(t+h)X(t)|<u+1,nNmNkN|hh|<S1/nlog|h|mksothat,foreverytTanduR,bysequentialmonotoniccontinuityofP,P(αX(t)u)=limlimlimPminlog|X(t+h)X(t)|<u+1.nmk|h|<1/nlog|h|mShkTheeventmentionedinthelastprobabilityinvolvesafinitenumberofincre-mentsofX,allofthembasedonpointt.Thestationarityoftheincrements
VII–10impliesthatwecanreplacethemwiththeanalogueincrements,basedonpoint0.ItfollowsthatforalluRP(αX(0)u)=P(αX(t)u),whichmeansthatαX(t)andαX(0)havethesamelaw,foralltT.WealreadyknowthatthepointwiseHölderexponentofXatpoint0isdeterministic,sothatthereexistsH[0,1]suchthatP(αX(0)=H)=1.TheequalityinlawbetweenαX(t)andαX(0)thusleadstoP(αX(t)=H)=1,foralltT.3HölderspacesLetusintroducetheHölderspacesbyaninformaldescriptionofthemostfa-miliarcase.Forfixed0<a<1,Haisthesetoffunctionsx:[0,1]Rsuchthat|x(t)x(s)|≤K|ts|aforsomeconstantKdependingonlyonxanda.ThebestconstantKinthisuniformestimatedefinesasemi-normonthevectorspaceHa.Byadding|x(0)|tothissemi-normweobtainanormkxkawhichmakesHaanonseparableBanachspace.Clearlyif0<a<b<1,HbistopologicallyembeddedinHaandalltheseHölderspacesaretopologicallyembeddedintheclassicalBanachspaceCofcontinuousfunctions[0,1]R.ToremedythenonseparabilitydrawbackofHa,oneintroducesitssubspaceHa,ooffunctionsxsuchthat|x(t)x(s)|=o(|ts|a)uniformly.Thissubspaceisclosed(hencealsoaBanachspaceforthesamenormkxka)andseparable.OneinterestingfeatureofthespacesHa,oistheexistenceofabasisoftriangularfunctions,see[9].Itisconvenienttowritethisbasisasatriangulararrayoffunctions,indexedbythedyadicnumbers.LetusdenotebyDjthesetofdyadicnumbersin[0,1]oflevelj,i.e. D0={0,1},Dj=(2l1)2j;1l2j1,j1.WriteforrDj,j0,r:=r2j,r+:=r+2j.ForrDj,j1,thetriangularFaber-SchauderfunctionsΛrarecontinuous,piecewiseaffinewithsupport[r,r+]andtakingthevalue1atr:2j(tr)ift(r,r];Λr(t)=2j(r+t)ift(r,r+];0else.Whenj=0,wejusttaketherestrictionto[0,1]intheaboveformula,soΛ0(t)=1t,Λ1(t)=t,t[0,1].Thesequence{Λr;rDj,j0}isaSchauderbasisofC.Eachx∈ChasauniqueexpansionXXx=λr(xr,(6)j=0rDj
VII–11withuniformconvergenceon[0,1].TheSchauderscalarcoefficientsλr(x)aregivenbyx(r+)+x(r)λr(x)=x(r),rDj,j1,(7)2andinthespecialcasej=0byλ0(x)=x(0)1(x)=x(1).(8)nPThepartialsumj=0intheseries(6)givesthelinearinterpolationofxbyapolygonallinebetweenthedyadicpointsoflevelatmostn.Λr(t)10rrr+tj2Figure1:TheFaber-SchaudertriangularfunctionΛrCiesielski[9]provedthat{Λr;rDj,j0}isalsoaSchauderbasisofeachspaceHa,o(hencetheconvergence(6)holdsintheHatopologywhenx∈Ha,o)andthatthenormkxkaisequivalenttothefollowingsequencenorm:kxksaeq:=sup2jamax|λr(x)|.j0rDjThisequivalenceofnormsprovidesaveryconvenientdiscretizationproceduretodealwithHölderspacesandisextendedinRačkauskasandSuquet[34]tothemoregeneralsettingofHölderspacesofBanachspacevaluedfunctionsx,withamodulusofcontinuitycontrolledbysomeweightfunctionρ.Let(B,kk)beaseparableBanachspace.WewriteCBfortheBanachspaceofcontinuousfunctionsx:[0,1]Bendowedwiththesupremumnormkxk:=sup{kx(t)k;t[0,1]}.Letρbearealvaluednondecreasingfunctionon[0,1],nullandrightcontinuousat0.Putω(x,δ):=supkx(t)x(s)k.ρs,t[0,1],ρ(ts)0<ts<δ
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents