Advanced data acquisition and exploitation in scanning near-field (magneto-)optical microscopy [Elektronische Ressource] / vorgelegt von Fabian Kiendl
123 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Advanced data acquisition and exploitation in scanning near-field (magneto-)optical microscopy [Elektronische Ressource] / vorgelegt von Fabian Kiendl

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
123 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Advanced data acquisition and exploitationin scanning near- eld (magneto-)opticalmicroscopyVon der Fakult at fur Mathematik, Informatik undNaturwissenschaften der Rheinisch-Westf alischenTechnischen Hochschule Aachen zur Erlangungdes akademischen Grades eines Doktors derNaturwissenschaften genehmigte Dissertationvorgelegt von Diplom-PhysikerFabian Kiendlaus DortmundBerichter: Universitatsprofessor Dr. sc. nat. Gernot Gun therodtUniversit atsprofessor Dr. rer. nat. Paul FumagalliTag der mundlic hen Prufung: 3. Februar 2005Diese Dissertation ist auf den Internetseiten derHochschulbibliothek online verfugba r.Contents1 Introduction 42 SNOM system under study and objective of this work 82.1 Principles of scanning near- eld(magneto-)optical microscopy . . . . . . . . . . . . . . . . . . . . 82.1.1 From classical to near-eld microscopy . . . . . . . . . . . 82.1.2 Magneto-optical imaging . . . . . . . . . . . . . . . . . . . 102.2 Physical data acquisition . . . . . . . . . . . . . . . . . . . . . . . 122.2.1 Optical system . . . . . . . . . . . . . . . . . . . . . . . . 122.2.2 Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2.3 Tip preparation . . . . . . . . . . . . . . . . . . . . . . . . 152.3 Data exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3.1 Formation of the raw image . . . . . . . . . . . . . . . . . 172.3.2 Corrections for long-term drifts . . . . . . . . . . . . . . . 182.3.

Sujets

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 8
Langue English
Poids de l'ouvrage 4 Mo

Extrait

Advanced data acquisition and exploitation
in scanning near- eld (magneto-)optical
microscopy
Von der Fakult at fur Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westf alischen
Technischen Hochschule Aachen zur Erlangung
des akademischen Grades eines Doktors der
Naturwissenschaften genehmigte Dissertation
vorgelegt von Diplom-Physiker
Fabian Kiendl
aus Dortmund
Berichter: Universitatsprofessor Dr. sc. nat. Gernot Gun therodt
Universit atsprofessor Dr. rer. nat. Paul Fumagalli
Tag der mundlic hen Prufung: 3. Februar 2005
Diese Dissertation ist auf den Internetseiten der
Hochschulbibliothek online verfugba r.Contents
1 Introduction 4
2 SNOM system under study and objective of this work 8
2.1 Principles of scanning near- eld
(magneto-)optical microscopy . . . . . . . . . . . . . . . . . . . . 8
2.1.1 From classical to near-eld microscopy . . . . . . . . . . . 8
2.1.2 Magneto-optical imaging . . . . . . . . . . . . . . . . . . . 10
2.2 Physical data acquisition . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Optical system . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Tip preparation . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Data exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Formation of the raw image . . . . . . . . . . . . . . . . . 17
2.3.2 Corrections for long-term drifts . . . . . . . . . . . . . . . 18
2.3.3 Fourier de-noising . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Motivation and objectives of this work . . . . . . . . . . . . . . . 19
3 Improved physical data acquisition 22
3.1 Provision of direct access to the raw data . . . . . . . . . . . . . . 22
3.2 Discovery of crosstalk between the tip–sample distance and the
detected light’s polarization . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Impact of the aperture–sample distance on the polarization 25
3.2.3 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Fabrication of topography-free test samples . . . . . . . . . . . . . 29
3.3.1 Nonmagnetic latex projection pattern . . . . . . . . . . . . 29
3.3.2 Magnetic latex projection pattern . . . . . . . . . . . . . . 30
3.4 Re nement of tip preparation . . . . . . . . . . . . . . . . . . . . 32
3.5 Improvement of shear-force distance control . . . . . . . . . . . . 34
4 Improved raw image formation 37
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Use of medians instead of means . . . . . . . . . . . . . . . . . . . 39
14.3 Improved correction for long-term drifts . . . . . . . . . . . . . . 40
4.4 Exploitation of all raw data . . . . . . . . . . . . . . . . . . . . . 43
5 Improved image ltering through wavelet analysis 44
5.1 From Fourier ltering to wavelet ltering . . . . . . . . . . . . . . 45
5.1.1 Generic procedure for ltering . . . . . . . . . . . . . . . . 45
5.1.2 Fourier ltering . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.3 Basics of wavelets . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.4 Wavelet ltering . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Wavelet de-striping . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Wavelet de-noising . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Piloted wavelet de-noising . . . . . . . . . . . . . . . . . . 53
5.3.3 Image similarity evaluated by two-dimensional correlation 56
5.3.4 Invariance with respect to contrast reversal . . . . . . . . . 56
5.3.5 Optimization procedure . . . . . . . . . . . . . . . . . . . 59
5.4 Isotropization of wavelet ltering . . . . . . . . . . . . . . . . . . 59
6 Resolution improvement by image deconvolution 62
6.1 Superposition of simultaneously illuminated spots . . . . . . . . . 63
6.2 Modeling the imaging process . . . . . . . . . . . . . . . . . . . . 65
6.3 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Algebraic and geometric properties of deconvolution . . . . . . . . 71
6.5 Impact of uncertainties in the aperture size . . . . . . . . . . . . . 74
6.6 Sensitivity to image noise . . . . . . . . . . . . . . . . . . . . . . 75
6.6.1 Experimental observation . . . . . . . . . . . . . . . . . . 75
6.6.2 Quantitative sensitivity measure . . . . . . . . . . . . . . . 76
6.6.3 Singular value-based sensitivity analysis . . . . . . . . . . 78
7 Simulations and experimental case studies 83
7.1 Test on a simulated model image . . . . . . . . . . . . . . . . . . 83
7.2 Test on a magnetic projection pattern. . . . . . . . . . . . . . . . 85
7.3 Test on other magnetic samples . . . . . . . . . . . . . . . . . . . 86
8 AdvancedinvestigationsandapplicationsforandbeyondSNOM 89
8.1 Deconvolution vs use of ner apertures . . . . . . . . . . . . . . . 89
8.2volution for square apertures . . . . . . . . . . . . . . . . . 93
8.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2.2 Modeling the imaging process . . . . . . . . . . . . . . . . 93
8.2.3 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2.4 Impact of square apertures on image acquisition and de-
convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Dither-sensitive image acquisition . . . . . . . . . . . . . . . . . . 98
28.3.1 Motivation and principle . . . . . . . . . . . . . . . . . . . 98
8.3.2 Modeling the imaging process and deconvolution . . . . . . 99
8.3.3 Sensitivity with respect to uncertainties of the dither am-
plitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3.4 Impact of dither-sensitive image acquisition . . . . . . . . 101
8.4 Applicability to other scanning microscopies . . . . . . . . . . . . 102
8.5 Towards future re nements . . . . . . . . . . . . . . . . . . . . . . 104
8.5.1 Inhomogeneous intensity pro le of the aperture . . . . . . 104
8.5.2 Extended use of the sensitivity map . . . . . . . . . . . . . 105
8.5.3 Alternativeimagesimilaritymeasureandapproachtowards
an artifact measure . . . . . . . . . . . . . . . . . . . . . . 107
9 Conclusions 110
Bibliography 113
Acknowledgements 121
Curriculum Vitae 122
3Chapter 1
Introduction
Scanning near- eld optical microscopy (SNOM) [Betz92, Pohl94, Paes96] is an
attractive imaging technique that combines the well-known advantages of optical
microscopy with a resolution beyond the classical di raction limit. Consider-
able e ort has been invested recently on exploration of new contrast mechanisms
[Hart03, Shub02]. Advanced detection con gurations [Sick01, Meye03a] and im-
proved tip production techniques [Voll01, Gros03] have further increased reso-
lution. The question of artifacts, one of the main caveats in SNOM [Hech97,
Gucc01], is being addressed [Jord99, Laba00].
While these e orts to improve the physical acquisition of SNOM raw data
represent the mainstream of the current work in SNOM, harnessing the power
of sophisticated computational methods [Hata99, Carn00, Carn01, Carn04] for
the exploitation of the raw data remains a niche eld. There are other areas
of science, particularly astronomy, where sophisticated exploitation of the raw
data through computational methods is at least as important as their e cient
acquisitionthroughtheexperimentalsystem. Throughimprovedre-analysisdata
from the rst space probes, launched 30 years ago, can still be made to yield new
scienti cinsightsthatwouldotherwisehavenecessitatedanewmission. Another
striking example is the Hubble Space Telescope, which stood on the brink of
failurebecauseofafaultymainmirror. Throughcomputationaldataexploitation,
theerrorwaspinpointedfromEarthsothatitcouldbecomputationallycorrected
from the acquired images and remedied physically in a later repair mission.
Thiswork,asynopsisofwhichisgivenin[Kien05],isaboutthedevelopmentof
anintegrated framework that combines improvements of the physical data acqui-
sition and novel computational data exploitation methods to produce improved
SNOM images. Using an existing magneto-optical SNOM system (Chapter 2)
as an object of study, we reconsider all the processing stages that the raw data
undergo. Wedevelopmoree cientstrategiesforformingtherawimagefromthe
raw data and for ltering the raw image. Moreover, we propose to extend the
concept of image deconvolution [Hels67] to SNOM, so that the image resolution
can be improved beyond the diameter of the aperture. We show that this idea
4introduces new insights and opens various new and e cient paths both towards
the exploitation of conventionally acquired raw data and towards novel detection
concepts for raw data acquisition. To demonstrate their practical use, our main
methods are applied to actual SNOM images and investigated through simula-
tions. Although initiated for our SNOM and tested (mainly) on SNOM images,
most of our methods can also be applied to other scanning microscopy systems.
Our work is organized as follows.
InChapter2wedescribetheSNOMsystemunderstudy,whichisthestarting
point of our work, and our objectives.
Although our focus is on improving the SNOM images formed from given raw
data, be they good or not, the potential gain from improv

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents