Assembly and characterization of supramolecular architectures for biosensor applications [Elektronische Ressource] / vorgelegt von Fei Xu
126 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Assembly and characterization of supramolecular architectures for biosensor applications [Elektronische Ressource] / vorgelegt von Fei Xu

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
126 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Assembly and Characterization of Supramolecular Architectures for Biosensor Applications Dissertation zur Erlangung des Grades “Doktor der Naturwissenschafen” am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz vorgelegt von Fei Xu aus Changchun, Jilin, V. R. China Mainz, Mai, 2005 - ii - Dekan: Prof. Dr. H. Paulsen Tag der mündlichen Prüfung: 31, Mai 2005 Die vorliegende Arbeit wurde unter Betreuung von Herrn Prof. Dr. W. Knoll im Zeitraum zwischen Juli 2002 bis Mai 2005 am Max-Planck-Institute für Polymerforschung, Mainz, Deutschland angefertigt. ii- i - CONTENTS 1 INTRODUCTION..................................................................................................... 1 1.1 BIOSENSOR..................................................................................................................... 1 1.1.1 Optical fiber biosensors ...................................................................................................................... 2 1.1.2 Optical fiber biosensors based on immobilized enzymes .... 3 1.2 SUPRAMOLECULAR ARCHITECTURES............................................................................. 4 1.2.1 Hydrogel................................................................................................................................................ 5 1.2.2 Colloidal gold nanoparticles ...........

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 16
Langue Deutsch
Poids de l'ouvrage 3 Mo

Extrait





Assembly and Characterization of Supramolecular
Architectures for Biosensor Applications




Dissertation zur Erlangung des Grades
“Doktor der Naturwissenschafen”





am Fachbereich Biologie
der Johannes Gutenberg-Universität
in Mainz





vorgelegt von
Fei Xu
aus Changchun, Jilin, V. R. China



Mainz, Mai, 2005 - ii -

Dekan: Prof. Dr. H. Paulsen

Tag der mündlichen Prüfung: 31, Mai 2005




















Die vorliegende Arbeit wurde unter Betreuung von Herrn Prof. Dr. W. Knoll im Zeitraum
zwischen Juli 2002 bis Mai 2005 am Max-Planck-Institute für Polymerforschung, Mainz,
Deutschland angefertigt.
ii- i -

CONTENTS



1 INTRODUCTION..................................................................................................... 1
1.1 BIOSENSOR..................................................................................................................... 1
1.1.1 Optical fiber biosensors ...................................................................................................................... 2
1.1.2 Optical fiber biosensors based on immobilized enzymes .... 3
1.2 SUPRAMOLECULAR ARCHITECTURES............................................................................. 4
1.2.1 Hydrogel................................................................................................................................................ 5
1.2.2 Colloidal gold nanoparticles ................................................................. 12
1.3 AIM OF THE STUDY ...................................................................................................... 17
2 METHODS AND THEORIES............................................................................... 20
2.1 SURFACE PLASMON OPTICS ......................................................................................... 20
2.1.1 Surface plasmon resonance spectroscopy (SPR) ........................................................................ 20
2.1.1.1 SPR principle ...................................................................................................................................... 20
2.1.1.2 Surface Plasmon Spectroscopy with Prism Coupling.............................. 25
2.1.1.3 SPR Response to a Thin Film Deposition .............................................. 28
2.1.2 Surface Plasmon Field-Enhanced Fluorescence Spectroscopy (SPFS) ............. 31
2.1.2.1 Field Enhancement.................................................................................................................. 31
2.1.2.2 Fluorescence at the Metal/Dielectric Interface .................................................................................... 35
2.1.3 Home-Made SPFS Setup ............................................... 39
2.2 ENZYMATIC ACTIVITY ASSAY ....................................................................................... 41
2.2.1 Properties and classification of enzymes ............................................................................................. 41
2.2.2 Enzyme kinetics ................................................................................................................. 42
2.2.3 Michaelis-Menten Kinetics............................. 45
2.2.4 Lineweaver-Burk Plots ...................................................................................................... 47
2.2.5 Combination of surface plasmon spectroscopy and fiber optic absorbance spectroscopy........... 48
2.2.6 Catalytic activity assay of ß-lactamase................................................................................................. 49
2.3 LANGMUIR ISOTHERM.................................................................................................. 51
3 COMPARATIVE DETECTION OF INTERFACIAL BINDING OF
ßLACTAMASE TO DIFFERENT MATRICES COMBINED WITH CATALYTIC
ACTIVITY ASSAY ........................................................................................................ 56
3.1 INTRODUCTION............................................................................................................. 56
3.2 MATERIALS................................................................................................................... 58
3.3 SUBSTRATES................................................................................................................. 59
3.4 COMPARISON OF SURFACE MODIFICATION BASED ON FIVE KINDS OF MATRICES ......... 60
3.5 COMPARISON OF DIFFERENT OPTICAL DETECTION METHODS (OWLS AND SPR): ....... 64
3.6 ESTIMATION OF REGENERATION POSSIBILITIES .......................................................... 65
3.7 ENZYME ACTIVITY ASSAY........................................................................................... 67
3.8 CONCLUSION ................................................................................................................ 73
4 QUANTIFICATION OF DNA HYBRIDIZATION BASED ON
ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION (OMCVD) GOLD
PARTICLES.................................................................................................................... 75
4.1 INTRODUCTION............................................................................................................. 75
4.2 MATERIALS................................................................................................................... 77
i- ii -
4.3 METHODS ..................................................................................................................... 80
4.4 COMPARATIVE QUANTIFICATION OF DNA HYBRIDIZATION BASED ON PLANAR AND
GOLD PARTICLE MATRICES......................................................................................................... 83
4.5 NON-SPECIFIC BINDING OF DNA ON A OMCVD GOLD PARTICLE MATRIX................... 86
4.6 SEQUENCE-SPECIFIC DETECTION OF DNA HYBRIDIZATION BASED ON OMCVD GOLD
PARTICLES.................................................................................................................................. 88
4.7 CONCLUSION AND OUTLOOK........................................................................................ 88
5 EXTERNAL STIMULI AND INTERNAL CROSSLINK RESPONSES OF
CARBOXYMETHYL DEXTRAN (CMD) FOR SURFACE PLASMON
RESONANCE (SPR) APPLICATIONS....................................................................... 90
5.1 INTRODUCTION............................................................................................................. 90
5.2 MATERIALS................................................................................................................... 92
5.3 STIMULI RESPONSES OF CMD CHARACTERIZED FROM SPR SIMULATION ................... 93
5.4 STIMULI RESPONSE OF FLUOROPHORES LABELED CMD DETECTED BY SPFS ............. 97
5.5 INFLUENCE OF SURFACE CHARGE AND CROSSLINK DENSITIES ON THE STIMULI
RESPONSES OF CMD................................................................................................................ 101
5.6 CONCLUSION .............................................................................................................. 104
6 SUMMARY ........................................................................................................... 105
7 SUPPLEMENT ..................................................................................................... 108
7.1 ABBREVIATIONS ......................................................................................................... 108
7.2 LIST OF FIGURES ........................................................................................................ 110
7.3 LIST OF TABLES .......................................................................................................... 113
7.4 BIBLIOGRAPHY........................................................................................................... 114
CURRICULUM VITAE............................................................................................... 121
ii- 1 -
1 INTRODUCTION

1.1 Biosensor

Biosensors are used to measure biological effects, such as genotoxicity, immunotoxicity, biotoxins,
and endocrine effects. In addition, they are used to measure the concentration of specific analytes that
are difficult to detect, which are usually important contaminants of water, waste water, soil, or air, for
instance, surfactants, chlorinated hydrocarbons, and pesticides. Other benefits include simple
operation, fast response times, high sensitivity, selectivity, in situ monitoring, compact, rugged, and
miniature-size instrument, easy to interface, and integrate with microprocessors of signal devices.
These qualities make biosensors eligible for different applications, such as in the biochemical field,
environmental monitoring, clinical analysis, food processing, brewing, and pharmaceutical industries.
A biosensor device comprises of a biological recognition element directly interfaced to a signal
transducer, which together relate the concentration of an analyte or group of analytes to a measurable
response. A receptor is a biologically se

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents