Bioinformatics methods and applications for functional analysis of mass spectrometry based proteomics data [Elektronische Ressource] / Chanchal Kumar
197 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Bioinformatics methods and applications for functional analysis of mass spectrometry based proteomics data [Elektronische Ressource] / Chanchal Kumar

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
197 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Bioinformatics methods and applications for functional analysis of mass spectrometry based proteomics data Chanchal Kumar aus Masimpur-Assam, India 2008 Erklärung Diese Dissertation wurde im Sinne von §13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Matthias Mann betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 16.10.2008 ________________________ (Chanchal Kumar) Dissertation eingereicht am 16.10.2008 1. Gutachter: Prof. Dr. Matthias Mann 2. Gutachter: Prof. Dr. Karsten Suhre Mündliche Prüfung am 14.11.2008 "From the standpoint of daily life, however, there is one thing we do know: that we are here for the sake of each other - above all for those upon whose smile and well-being our own happiness depends, and also for the countless unknown souls with whose fate we are connected by a bond of sympathy. Many times a day I realize how much my own outer and inner life is built upon the labors of my fellow men, both living and dead, and how earnestly I must exert myself in order to give in return as much as I have received.

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 8
Langue English
Poids de l'ouvrage 8 Mo

Extrait




Dissertation zur Erlangung des Doktorgrades
der Fakultät für Chemie und Pharmazie
der Ludwig-Maximilians-Universität München



Bioinformatics methods and applications for
functional analysis of mass spectrometry based
proteomics data



Chanchal Kumar
aus
Masimpur-Assam, India


2008









Erklärung
Diese Dissertation wurde im Sinne von §13 Abs. 3 der Promotionsordnung vom
29. Januar 1998 von Herrn Prof. Matthias Mann betreut.


Ehrenwörtliche Versicherung
Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.


München, am 16.10.2008




________________________
(Chanchal Kumar)




Dissertation eingereicht am 16.10.2008

1. Gutachter: Prof. Dr. Matthias Mann
2. Gutachter: Prof. Dr. Karsten Suhre

Mündliche Prüfung am 14.11.2008





















"From the standpoint of daily life, however, there is one thing we do know: that we
are here for the sake of each other - above all for those upon whose smile and well-
being our own happiness depends, and also for the countless unknown souls with
whose fate we are connected by a bond of sympathy. Many times a day I realize
how much my own outer and inner life is built upon the labors of my fellow men,
both living and dead, and how earnestly I must exert myself in order to give in
return as much as I have received."

-Albert Einstein















Table of contents


Table of Contents
Summary 1

1. Mass spectrometry based proteomics 9
1.1. Generic Workflow of MS-based Proteomics 10
1.2. Computational and Functional Proteomics 13

2. Mass spectrometry 15
2.1. Types of ionization and Mass Spectrometers used in proteomics 15
2.1.1. Electrospray Ionization - ESI (2+, 3+) 15
2.1.2. Matrix-assisted laser desorption ionization –MALDI(1+) 16
2.2. Traditional mass analyzers in proteomics: TOF, quadrupoles and ion traps 18
2.2.1. Time-of-flight mass spectrometry 18
2.2.2. Quadrupole ion trap MS 20
2.3. Hybrid instruments - State-of-the-art MS analyzers 21
2.3.1. LTQ-FT - a linear quadrupole ion trap – 7T-FTICR mass spectrometer 22
2.3.2. LTQ-Orbitrap 24

3. Quantitative Proteomics 27
3.1. Stable isotope dilution 27
3.2. Isotope coded affinity tags (ICAT) 28
3.3. HysTag 29
3.4. Metabolic labeling 31
3.5. Stable Isotope Labeling by Amino acids in Cell culture (SILAC) 31
183.6. Enzymatic isotope labeling ( O) 33
3.7. Tandem mass tags – iTRAQ 33
3.8. AQUA and Absolute SILAC for– absolute quantitation 34
3.9. Alternative methods – Quantitation without Stable isotopes 35

4. Mass spectrometry data analysis - from ions to protein identification and quantitation 37
4.1. Peptide and Protein identification 38
4.2. Peptide and Protein Quantitation 39

5. Bioinformatics for high throughput “omics” sciences 41
5.1. Current state-of-the-art in Bioinformatics 42
i
Table of contents


5.1.1. Microarray Bioinformatics for Gene Expression - Functional Genomics 44
5.1.2. Bioinformatics of Gene Regulation 46
5.1.3. Network Bioinformatics 47
5.2. Bioinformatics for high-throughput mass-spectrometry proteomics data 50
5.2.1. Bioinformatics for Qualitative Proteomics 50
5.2.2. Bioinformatics for Quantitative Proteomics 50
5.3. Prologue to the thesis work 51

6. In-depth Analysis of the Adipocyte Proteome by Mass Spectrometry and Bioinformatics 53
6.1. Introduction 53
6.2. Materials and Methods 55
6.2.1. Cell culture 55
6.2.2. Subcellular fractionation and western blotting 55
6.2.3. 1D-SDS-PAGE and in-gel digest 56
6.2.4. Nanoflow LC- MS2 or MS3 56
6.2.5. Proteomic data analysis 57
6.2.6. Enrichment analysis of Gene Ontology (GO) categories 58
6.2.7. InterPro domain enrichment for insights into protein function 59
6.2.8. Proteome mRNA concordance analysis for 3T3-L1 adipocytes 60
6.2.9. Protein prioritization analysis 61
6.2.10. Annotating hypothetical proteins using orthology based annotation transfer 61
6.2.11. Hierarchical clustering of cellular compartment profiles of the adipocyte proteome 62
6.2.12. Pathway mapping of identified proteins in subcellular compartments 62
6.3. Results 63
6.3.1. High confidence protein identification of mouse adipocyte organelles 63
6.3.2. Depth and Coverage of the 3T3-L1 Adipocyte Proteome assessed by
Comprehensive Bioinformatics 66
6.3.2.1. Qualitative comparison with earlier studies 66
6.3.2.2. Microarray comparison precludes any abundance related bias in proteome
Identification 68
6.3.2.3. Coverage of proteome in terms of pathways and annotated complexes 70
6.3.3. Visual interpretation of proteome sub-cellular localization by hierarchical
clustering and its concordance with earlier studies and genome wide annotations 73
6.3.4. Protein Domain Enrichment for Insights into Protein Function 73
ii
Table of contents


6.3.5. An integrative genomics approach for protein prioritization analysis of vesicular
trafficking in adipocytes 76
6.4. Discussion 79

7. Comparative proteomic phenotyping to assess functional differences between primary
hepatocyte and the Hepa1-6 cell line 81
7.1. Introduction 81
7.2. Materials and Methods 82
7.2.1. Materials and reagents 82
7.2.2. Isolation of mouse primary hepatocytes 82
7.2.3. SILAC labeling of mouse hepatoma cell line Hepa1-6 82
7.2.4. Fluorescence microscopy 83
7.2.5. Protein harvest, digestion 83
7.2.6. Peptide preparation for mass spectrometry 84
7.2.7. Mass spectrometry and data analysis 84
7.2.8. Gene Ontology and KEGG enrichment analysis based hierarchical clustering 85
7.3. Results 85
7.3.1. Quantitative analysis of Hepa1-6 against primary hepatocytes 85
7.3.2. A novel bioinformatics method for proteomic phenotyping 89
7.3.3. Proteomic differences between Hepa1-6 and primary hepatocytes revealed by
systematic bioinformatics 92
7.4. Discussion 101

8. A systems view of the cell cycle by quantitative phosphoproteomics 103
8.1. Introduction 103
8.2. Materials and Methods 105
8.2.1. Cell culture and sample preparation 105
8.2.2. Fluorescence-activated Cell Sorting Analysis 105
8.2.3. Western blotting 105
8.2.4. Mass Spectrometry 107
8.2.5. Data processing and analysis 107
8.2.6. Peak time index calculation for (phospho)-proteomic temporal profiles 108
8.2.7. Cyclic angular peak calculations based on peak time index of (phospho)-
proteomic temporal profiles 108
iii
Table of contents


8.2.8. Enrichment analysis for Gene Ontology Cellular Component (CC) based on
circular statistics 109
8.2.9. Comparison with cell cycle microarray dataset 109
8.2.10. Comparison with steady-state HeLa microarray data 110
8.2.11. Gene Ontology and KEGG pathways enrichment based clustering for protein
groups based on peak time 110
8.2.12. Analysis of kinase–substrate relationships during phases of the cell cycle 111
8.2.13. New candidates in the DRR network 111
8.3. Results 112
8.3.1. High throughput identification of proteome changes during the cell cycle 112
8.3.2. Coverage of the proteome 112
8.3.3. Analyzing proteome time course by novel bioinformatics approach 113
8.3.4. Directional statistics based enrichment of protein profiles reveal co-regulated
Complexes 119
8.3.5. Proteome transcriptome comparison reveals depth of coverage and weak
expression correlation 121
8.3.6. Analysis of cell cycle pho

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents