C_1hn2 rectifiability and Q valued functions [Elektronische Ressource] / vorgelegt von Ulrich Menne
55 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

C_1hn2 rectifiability and Q valued functions [Elektronische Ressource] / vorgelegt von Ulrich Menne

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
55 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

2C rectifiability andQ valued functionsDissertationzur Erlangung des Grades eines Doktors der Naturwissenschaftender Fakultat fur Mathematik und Physik¨ ¨der Eberhard-Karls-Universitat Tubingen¨ ¨vorgelegt vonUlrich Menneaus Frankfurt am Main2008Tag der mun¨ dlichen Qualifikation: 08.08.2008Dekan: Prof. Dr. Nils Schopohl1. Berichterstatter: Prof. Dr. Reiner Schatzle¨2. Berich Prof. Dr. Tom IlmanenContentsZusammenfassung in deutscher Sprache 1Introduction 11 Approximation of integral varifolds 52 A Sobolev Poincar´e type inequality for integral varifolds 253 About the significance of the 1 tilt 34A The Isoperimetric Inequality and its applications 36B A differentiation theorem 42C An example concerning tilt and height decays of integral vari-folds 44D Elementary properties of Q valued functions 47References 52iiZusammenfassung in deutscher Sprachen+mIn dieser Arbeit werden integrale n Varifaltigkeiten in R betrachtet, wel-pche eine Bedingung an die verallgemeinerte mittlere Krummung inL -Raumen¨ ¨erfullen. Genauer wird der Zusammenhang von Großen, welche den klassischen¨ ¨Tilt- und Height-Excess umfassen und verallgemeinern, untersucht, insbesonde-2re im Hinblick auf die Frage moglic¨ herC -Rektifizierbarkeit solcher Varifaltigkei-ten.

Sujets

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 39
Langue Deutsch

Extrait

2C rectifiability andQ valued functions
Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften
der Fakultat fur Mathematik und Physik¨ ¨
der Eberhard-Karls-Universitat Tubingen¨ ¨
vorgelegt von
Ulrich Menne
aus Frankfurt am Main
2008Tag der mun¨ dlichen Qualifikation: 08.08.2008
Dekan: Prof. Dr. Nils Schopohl
1. Berichterstatter: Prof. Dr. Reiner Schatzle¨
2. Berich Prof. Dr. Tom IlmanenContents
Zusammenfassung in deutscher Sprache 1
Introduction 1
1 Approximation of integral varifolds 5
2 A Sobolev Poincar´e type inequality for integral varifolds 25
3 About the significance of the 1 tilt 34
A The Isoperimetric Inequality and its applications 36
B A differentiation theorem 42
C An example concerning tilt and height decays of integral vari-
folds 44
D Elementary properties of Q valued functions 47
References 52
iiZusammenfassung in deutscher Sprache
n+mIn dieser Arbeit werden integrale n Varifaltigkeiten in R betrachtet, wel-
pche eine Bedingung an die verallgemeinerte mittlere Krummung inL -Raumen¨ ¨
erfullen. Genauer wird der Zusammenhang von Großen, welche den klassischen¨ ¨
Tilt- und Height-Excess umfassen und verallgemeinern, untersucht, insbesonde-
2re im Hinblick auf die Frage moglic¨ herC -Rektifizierbarkeit solcher Varifaltigkei-
ten. Das Hauptresultat besagt, daß die Abweichung der integralen Varifaltigkeit
von einer eventuell mehrwertigen Ebene (Height-Excess) durch die Abweichung
der approximativen Tangentialraume¨ der integralen Varifaltigkeit von besagter
Ebene (Tilt-Excess) und die mittlere Krumm¨ ung kontrolliert werden kann.
Introduction
2 n+mThis work is concerned with C rectifiability of integral n varifolds in R ,
m,n ∈ N which are of locally bounded first variation. More precisely, given
2assumptions on the mean curvature, the relationship between C rectifiability
and decay of height or tilt quantities is examined.
First,somedefinitionswillberecalled. Supposethroughouttheintroduction
n+mthatm,nareasaboveandU isanonempty,opensubsetofR . Using[Sim83,
Theorem 11.8] as a definition, μ is a rectifiable [an integral] n varifold in U if
andonlyifμisaRadonmeasureonU andforμalmostallx∈U thereexistsan
napproximate tangent planeT μ∈G(n+m,n) with multiplicityθ (μ,x) ofμ atx
nx [andθ (μ,x)∈N],G(n+m,n) denoting the set ofn dimensional, unoriented
n+mplanes inR . The distributional first variation of mass of μ equals
R
1 n+m(δμ)(η) = div ηdμ whenever η∈C (U,R )μ c
where div η(x) is the trace of Dη(x) with respect to T μ. kδμk denotes theμ x
total variation measure associated to δμ and μ is said to be of locally bounded
first variation if and only if kδμk is a Radon measure. The tilt-excess and the
height-excess of μ are defined by
R
−n 2tiltex (x,%,T) :=% |T μ−T| dμ(ξ),μ ξB (x)%
R
−n−2 2heightex (x,%,T) :=% dist(ξ−x,T) dμ(ξ)μ B (x)%
n+mwhenever x ∈ R , 0 < % < ∞, B (x) ⊂ U, T ∈ G(n+m,n); here S ∈%
n+mG(n+m,n) is identified with the orthogonal projection ofR ontoS and|·|
n+m n+mdenotes the norm induced by the usual inner product on Hom(R ,R ).
From the above definition of a rectifiablen varifoldμ one obtains thatμ almost
all of U is covered by a countable collection of n dimensional submanifolds of
n+m 1
R of class C . This concept is extended to higher orders of differentiability
by adapting a definition of Anzellotti and Serapioni in [AS94] as follows: A
k,α krectifiable n varifold μ in U is called countably rectifiable of class C [C ],
k ∈ N, 0 < α ≤ 1, if and only if there exists a countable collection of n
n+m k,α kdimensional submanifolds ofR of class C [C ] covering μ almost all of U.
k,α kThroughout the introduction this will be abbreviated to C [C ] rectifiability.
k,1 k+1Note that C rectifiability and C rectifiability agree by [Fed69, 3.1.15].
Decays of tilt-excess or height-excess have been successfully used in [All72,
2Bra78, Sch04a, Sch04b]. The link toC rectifiability is provided in [Sch04b], see
1below. In order to explain some of these results, a mean curvature condition is
introduced. AnintegralnvarifoldinU issaidtosatisfy(H ), 1≤p≤∞, ifandp
p n+m~only if either p > 1 and for some H ∈ L (μ,R ), called the generalisedμ loc
mean curvature of μ,
R
1 n+m~(δμ)(η) =− H •ηdμ whenever η∈C (U,R ) (H )μ pc
or p = 1 and
μ is of locally bounded first variation; (H )1
n+mhere • denotes the usual inner product onR . Brakke has shown in [Bra78,
5.7] that
tiltex (x,%,T μ) =o (%), heightex (x,%,T μ) =o (%) as %↓ 0μ x x x xμ
for μ almost every x∈U provided μ satisfies (H ) and1
2−ε 2−εtiltex (x,%,T μ) =o (% ), heightex (x,%,T ) =o (% ) as %↓ 0μ x x x xμ
for every ε > 0 for μ almost every x ∈ U provided μ satisfies (H ). In case2
of codimension 1 and p > n Sch¨atzle has proved the following result yielding
optimal decay rates.
Theorem 5.1 in [Sch04a]. If m = 1, p > n, p ≥ 2, and μ is an integral n
varifold in U satisfying (H ), thenp
2 2tiltex (x,%,T μ) =O (% ), heightex (x,%,T μ) =O (% ) as %↓ 0μ x x x xμ
for μ almost all x∈U.
The importance of the improvement from 2−ε to 2 stems mainly from the
fact that the quadratic decay of tilt-excess can be used to compute the mean
~curvature vectorH in terms of the local geometry ofμ which had already beenμ
notedin[Sch01,Lemma6.3]. In[Sch04b]Sch¨atzleprovidestheabovementioned
2link to C rectifiability as follows:
Theorem 3.1 in [Sch04b]. If μ is an integral n varifold in U satisfying (H )2
then the following two statements are equivalent:
2(1) μ is C rectifiable.
(2) For μ almost every x∈U there holds
2 2
tiltex (x,%,T μ) =O (% ), heightex (x,%,T μ) =O (% ) as %↓ 0.μ x x x xμ
2The quadratic decay of heightex implies C rectifiability without the con-μ
dition (H ) as may be seen from the proof in [Sch04b]. However, (1) would not2
2nimply (2) ifμ were merely required to satisfy (H ) for somep with 1≤p< ,p n+2
an example will be provided in C.5. On the other hand, it is evident from the
Caccioppoli type inequality relating tiltex to heightex and mean curvature,μ μ
see e.g. [Bra78, 5.5], that quadratic decay of heightex implies quadratic decayμ
for tiltex under the condition (H ). This leads to the following question:μ 2
2Problem. Does quadratic decay of tiltex imply quadratic decay of heightexμ μ
under the condition (H )?2
More generally, suppose thatμ is an integraln varifold inU satisfying (H ),p
1≤p≤∞, and 0<α≤ 1, 1≤q<∞. Does
R 1/q−α−n/q qlimsupr |T μ−T μ| dμ(ξ) <∞ξ xB (x)rr↓0
for μ almost all x∈U imply
R 1/q−1−α−n/q q
limsupr dist(ξ−x,T μ) dμ(ξ) <∞xB (x)rr↓0
for μ almost all x∈U?
The answer to the second question will be shown in 2.8–2.10 to be in the
np
affirmative if and only if either p ≥ n or p < n and αq ≤ , yielding inn−p
particular a positive answer to the first question. The main task is to prove the
following theorem which in fact provides a quantitative estimate together with
qthe usual embedding in L spaces.
Theorem 2.8. Suppose Q ∈N, 0<α ≤ 1, 1 ≤p ≤n, and μ is an integral n
varifold in U satisfying (H ).p
Then the following two statements hold:
nq np1 1(1) If p<n, 1≤q <n, 1≤q ≤ min{ , · }, then for μ almost all1 2 n−q α n−p1
na∈U with θ (μ,a) =Q there holds
−α−1−n/q2 qlimsupr kdist(·−a,T μ)ka 2L (μxB (a))r
r↓0
−α−n/q1 q≤ Γ limsupr kT −T μkμ a 1(1) L (μxB (a))r
r↓0
where Γ is a positive, finite number depending only onm, n, Q, q , and(1) 1
q .2
n(2) If p =n, n<q≤∞, then for μ almost all a∈U with θ (μ,a) =Q there
holds
−α−1limsupr kdist(·−a,T μ)k ∞a L (μxB (a))r
r↓0
−α−n/q≤ Γ limsupr kT −T μk q(2) μ a L (μxB (a))r
r↓0
where Γ is a positive, finite number depending only on m, n, Q, and q.(2)
Here T denotes the function mapping x to T μ whenever the latter exists.μ x
The connection to higher order rectifiability is provided by the following simple
adaption of [Sch04b, Appendix A].
Lemma 3.1. Suppose 0 < α ≤ 1, μ is a rectifiable n varifold in U, and A
denotes the set of all x∈U such that T μ exists andx
R
−n−1−αlimsup% dist(ξ−x,T μ)dμ(ξ)<∞.xB (x)%%↓0
1,αThen μxA is C rectifiable.
3The analog of Theorem 2.8 in the case of weakly differentiable functions can
be proved simply by using the Sobolev Poincar´e inequality in conjunction with
an iteration procedure. In the present case, however, the curvature condition is
needed to exclude a behaviour like the one shown by the function f : R → R
defined by
∞X
−if(x) = (2 )χ −i−1 −i (x) whenever x∈R[2 ,2 [
i=0
1at 0; in fact an example of this behaviour occurring on a set of positive L
1/2measure is provided byf ◦g whereg is the distance function from a compact
1set C such that L (C)> 0 and for some 0<λ< 1
−3/2 1liminfr L ([x+λr,x+r[∼C)> 0 whenever x∈C.
r↓0
Therefore the strategy to prove Theorem 2.8 is to provide a special Sobolev
Poincar´e type inequality for integral varifolds involving curvature, see 2.4. In
the construction weakly differentiable functions are replaced by Lipschitzian Q
m ∼valuedfunctions, aQvaluedfunctionbeingafunctionwithvaluesinQ (R ) =Q
m Q(R ) ∼ where ∼ is induced by the action of the group of permutations of
m Q{1,...,Q} on (R ) .
Roughly speaking, the construction performed in a ballB (a)⊂U proceeds

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents