Composite finite elements for trabecular bone microstructures [Elektronische Ressource] / vorgelegt von Lars Ole Schwen
188 pages
English

Composite finite elements for trabecular bone microstructures [Elektronische Ressource] / vorgelegt von Lars Ole Schwen

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
188 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Composite Finite Elements forTrabecular Bone MicrostructuresDissertationzur Erlangung des Doktorgrades (Dr. rer. nat.)der Mathematisch–Naturwissenschaftlichen Fakult¨at¨der Rheinischen Friedrich–Wilhelms–Universitat Bonnvorgelegt von Lars Ole Schwenaus D¨usseldorfBonn, Juli 2010Angefertigt mit Genehmigung der Mathematisch–Naturwissenschaftlichen Fakultat¨der Rheinischen Friedrich–Wilhelms–Universitat¨ Bonnam Institut fur¨ Numerische SimulationDiese Dissertation ist auf dem Hochschulschriftenserver der Universitats-¨ und Landes-bibliothek Bonn http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.Erscheinungsjahr: 20101. Gutachter: Prof. Dr. Martin Rumpf2. Prof. Dr. Alexey ChernovTag der Promotion: 07. Oktober 2010To my aunt Helga (1947 – 2006)AThis document was typeset using pdfLT X, the KOMA-Script scrbook document class,EPalladio/Mathpazo and Classico fonts, and (among many others) the microtype package.Cooperations and Previous PublicationsThis thesis was written as part of a joint research project with Prof. Dr. Hans-Joachim Wilke and Dipl.-Ing. Uwe Wolfram (Institute of Orthopaedic Research andBiomechanics, University of Ulm), Prof. Dr. Tobias Preusser (Fraunhofer MEVIS,Bremen), and Prof. Dr. Stefan Sauter (Institute of Mathematics, University of Zurich).

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 24
Langue English
Poids de l'ouvrage 8 Mo

Extrait

Composite Finite Elements for
Trabecular Bone Microstructures
Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch–Naturwissenschaftlichen Fakult¨at
¨der Rheinischen Friedrich–Wilhelms–Universitat Bonn
vorgelegt von Lars Ole Schwen
aus Dusseldor¨ f
Bonn, Juli 2010Angefertigt mit Genehmigung der Mathematisch–Naturwissenschaftlichen Fakultat¨
der Rheinischen Friedrich–Wilhelms–Universitat¨ Bonn
am Institut fur¨ Numerische Simulation
Diese Dissertation ist auf dem Hochschulschriftenserver der Universitats-¨ und Landes-
bibliothek Bonn http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.
Erscheinungsjahr: 2010
1. Gutachter: Prof. Dr. Martin Rumpf
2. Prof. Dr. Alexey Chernov
Tag der Promotion: 07. Oktober 2010To my aunt Helga (1947 – 2006)
AThis document was typeset using pdfLT X, the KOMA-Script scrbook document class,E
Palladio/Mathpazo and Classico fonts, and (among many others) the microtype package.Cooperations and Previous Publications
This thesis was written as part of a joint research project with Prof. Dr. Hans-
Joachim Wilke and Dipl.-Ing. Uwe Wolfram (Institute of Orthopaedic Research and
Biomechanics, University of Ulm), Prof. Dr. Tobias Preusser (Fraunhofer MEVIS,
Bremen), and Prof. Dr. Stefan Sauter (Institute of Mathematics, University of Zurich).
Parts of this thesis have been published or submitted for publication in the following
journal and proceedings articles:
• Florian Liehr, Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole
Schwen, Composite finite elements for 3D image based computing, Computing and
Visualization in Science 12 (2009), no. 4, pp. 171–188, reference [217]
• Tobias Preusser, Martin Rumpf, and Lars Ole Schwen, Finite element simulation
of bone microstructures, Proceedings of the 14th Workshop on the Finite Element
Method in Biomedical Engineering, Biomechanics and Related Fields, University
of Ulm, July 2007, pp. 52–66, reference [282]
• Lars Ole Schwen, Uwe Wolfram, Hans-Joachim Wilke, and Martin Rumpf,
Determining effective elasticity parameters of microstructured materials, Proceedings
of the 15th Workshop on the Finite Element Method in Biomedical Engineering,
Biomechanics and Related Fields, University of Ulm, July 2008, pp. 41–62,
reference [311]
• Uwe Wolfram, Lars Ole Schwen, Ulrich Simon, Martin Rumpf, and Hans-
Joachim Wilke, Statistical osteoporosis models using composite finite elements: A pa-
rameter study, Journal of Biomechanics 42 (2009), no. 13, pp. 2205–2209, refer-
ence [379]
• Lars Ole Schwen, Tobias Preusser, and Martin Rumpf, Composite finite elements
for 3D elasticity with discontinuous coefficients, Proceedings of the 16th Workshop
on the Finite Element Method in Biomedical Engineering, Biomechanics and
Related Fields, University of Ulm, 2009, accepted, reference [310]
• Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen,3D composite
finite elements for elliptic boundary value problems with discontinuous coefficients,
2010, submitted to SIAM Journal on Scientific Computing, reference [281]
• Martin Rumpf, Lars Ole Schwen, Hans-Joachim Wilke, and Uwe Wolfram,
Numerical homogenization of trabecular bone specimens using composite finite elements,
1st Conference on Multiphysics Simulation – Advanced Methods for Industrial
Engineering, Fraunhofer, 2010, reference [296]
Most C++ code developed for this dissertation has been published as part of
the QuocMesh software library by AG Rumpf, Institute for Numerical Simulation,
University of Bonn.
AMS Subject Classifications (MSC2010)
65D05, 65M55, 65M60, 65N30, 65N55, 74B05, 74Q05, 74S05, 80M10, 80M40, 92C10
iiiSummary
In many medical and technical applications, numerical simulations need to be per-
formed for objects with interfaces of geometrically complex shape. We focus on the
biomechanical problem of elasticity simulations for trabecular bone microstructures.
The goal of this dissertation is to develop and implement an efficient simulation tool
for finite element (FE) simulations on such structures, so-called composite FE. We will
deal with both the case of material/void interfaces (‘complicated domains’) and the
case of interfaces between different materials (‘discontinuous coefficients’).
t= 0.0 t= 0.05 t= 0.10 t= 1.0 t= 10.0 t= 20.0
For an aluminum foam embedded in polymethylmethacrylate subject to heating and cooling at the top
and bottom, respectively, heat diffusion is simulated and the temperature is visualized.
Shearing simulation for a cylindrical specimen Compression simulation for a cuboid specimen of
of porcine trabecular bone. Zooms to one corner porcine trabecular bone embedded in polymethyl-
of the specimen are shown on the right. All methacrylate. Color in both cases encodes the
deformations are scaled for better visualization. von Mises stress at the interface.
Construction of Composite FE. In classical FE simulations, geometric complexity is
encoded in tetrahedral and typically unstructured meshes. Composite FE, in contrast,
encode geometric complexity in specialized basis functions on a uniform mesh of
hexahedral structure. Other than alternative approaches (such as e. g. fictitious
domain methods, GFEM, immersed interface methods, partition of unity methods,
unfitted meshes, and XFEM), the composite FE are tailored to geometry descriptions
by3D voxel image data and use the corresponding voxel grid as computational mesh,
without introducing additional degrees of freedom, and thus making use of efficient
data structures for uniformly structured meshes.
The composite FE method for complicated domains goes back to Hackbusch and
Sauter [Numer. Math. 75 (1997), 447–472; Arch. Math. (Brno) 34 (1998), 105–117] and
restricts standard affine FE basis functions on the uniformly structured tetrahedral
grid (obtained by subdivision of each cube in six tetrahedra) to an approximation of
ivthe interior. This can be implemented as a composition of standard FE basis functions
on a local auxiliary and purely virtual grid by which we approximate the interface.
In case of discontinuous coefficients, the same local auxiliary composition approach
is used. Composition weights are obtained by solving local interpolation problems
for which coupling conditions across the interface need to be determined. These
depend both on the local interface geometry and on the (scalar or tensor-valued)
material coefficients on both sides of the interface. We consider heat diffusion as
a scalar model problem and linear elasticity as a vector-valued model problem to
develop and implement the composite FE. Uniform cubic meshes contain a natural
hierarchy of coarsened grids, which allows us to implement a multigrid solver for
the case of complicated domains.
Near an interface (red line) which is not
resolved by the regular computational grid,
composite FE basis functions are
constructed in such a way that they can
approximate functions satisfying a
coupling condition (depending on the
coefficients) across the interface.
Besides simulations of single loading cases, we also apply theHomogenization.
composite FE method to the problem of determining effective material properties,
e. g. for multiscale simulations. For periodic microstructures, this is achieved by
solving corrector problems on the fundamental cells using affine-periodic boundary
conditions corresponding to uniaxial compression and shearing. For statistically
periodic trabecular structures, representative fundamental cells can be identified
but do not permit the periodic approach. Instead, macroscopic displacements are
imposed using the same set as before of affine-periodic Dirichlet boundary conditions
on all faces. The stress response of the material is subsequently computed only on
an interior subdomain to prevent artificial stiffening near the boundary. We finally
check for orthotropy of the macroscopic elasticity tensor and identify its axes.
young human osteoporotic human porcine bovine
For specimens of vertebral trabecular bone of bipeds and quadrupeds, effective elasticity tensors are
visualized (where elongation indicates directional compressive stiffness). The human tensors are scaled
by 4 relative to the animal tensors.
vNotation
1 constant-1 function1(x)= 1
a thermal diffusivity tensor (p.13)
A(z) set of simplices adjacent to virtual node z (p.34)
B (local) matrices for construction of CFE weights (pp. 43 and 48)
c mass-specific heat capacity (p.13)
c characteristic function of a set M (p.36)M
kC space of real-valued, k times continuously differentiable functions
k 3 3(C ) space ofR -v k times differ
C elasticity tensor (p.14)
d space dimension, typically 2 or 3
D(r) set of virtual nodes constrained by a regular node r (p.34)
D( f) ‘descendants’ in multigrid coarsening (p.90)
d Kronecker symbol (p.17)i,j
the i unit vectori
E Young’s modulus (p.16); FE elasticity block matrix (p.60)
e[u] strain (p.14)
G grid/mesh:G regular cubic grid (p.28),G regular tetrahedral mesh (p.28),
4G virtual (tetrahedral) mesh (p.30)
g curved interface (p.28)
G (piecewise) planar interface (p.29)
H halfspaces (subdomains for a planar interface; p.19)
m,pH Sobolev space (p.14)
Id identity function Id(x)= x or identity matrix
4I index set for a node setN :I (p.28),I (p.30); interpolation operators
j global index (

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents