Detailed kinetic modelling of the oxidation and combustion of large hydrocarbons using an automatic generation of mechanisms [Elektronische Ressource] / vorgelegt von Yuswan Muharam
170 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Detailed kinetic modelling of the oxidation and combustion of large hydrocarbons using an automatic generation of mechanisms [Elektronische Ressource] / vorgelegt von Yuswan Muharam

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
170 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Detailed Kinetic Modelling of the Oxidation and Combustion of Large Hydrocarbons Using an Automatic Generation of Mechanisms I N A U G U R A L - D I S S E R T A T I O N zur Erlangung der Doktorwürde der Naturwissenschaftlich – Matematischen Gesamtfakultät der Ruprecht – Karls – Universität Heidelberg Vorgelegt von Master Eng. Yuswan Muharam aus Makasar, Indonesien Tag der mündlichen Prüfung: 18.11.2005 Detailed Kinetic Modelling of the Oxidation and Combustion of Large Hydrocarbons Using an Automatic Generation of Mechanisms Gutachter: Prof. Dr. Dr. h.c. Jürgen Warnatz Prof. Dr. Olaf Deutschmann ii ABSTRACT A mechanism generator code to automatically generate mechanisms for the oxidation and combustion of large hydrocarbons has been successfully modified in this work. The modification was through: (1) improvement of the existing rules such as cyclic-ether reactions and aldehyde reactions, (2) inclusion of some additional rules to the code, such as ketone reactions, hydroperoxy cyclic-ether formations and additional reactions of alkenes, (3) inclusion of small oxygenates, produced by the code but not included in the handwritten C -C sub-mechanism yet, to the handwritten C -C sub-mechanism.

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 11
Langue English
Poids de l'ouvrage 3 Mo

Extrait


Detailed Kinetic Modelling of the Oxidation and Combustion
of Large Hydrocarbons
Using an Automatic Generation of Mechanisms









I N A U G U R A L - D I S S E R T A T I O N

zur
Erlangung der Doktorwürde
der
Naturwissenschaftlich – Matematischen
Gesamtfakultät
der
Ruprecht – Karls – Universität
Heidelberg















Vorgelegt von
Master Eng. Yuswan Muharam
aus Makasar, Indonesien

Tag der mündlichen Prüfung: 18.11.2005

Detailed Kinetic Modelling of the Oxidation and Combustion
of Large Hydrocarbons
Using an Automatic Generation of Mechanisms



































Gutachter: Prof. Dr. Dr. h.c. Jürgen Warnatz
Prof. Dr. Olaf Deutschmann
ii ABSTRACT




A mechanism generator code to automatically generate mechanisms for the oxidation and
combustion of large hydrocarbons has been successfully modified in this work. The
modification was through:
(1) improvement of the existing rules such as cyclic-ether reactions and aldehyde
reactions,
(2) inclusion of some additional rules to the code, such as ketone reactions,
hydroperoxy cyclic-ether formations and additional reactions of alkenes,
(3) inclusion of small oxygenates, produced by the code but not included in the
handwritten C -C sub-mechanism yet, to the handwritten C -C sub-mechanism. 1 4 1 4

In order to evaluate mechanisms generated by the code simulation of observed results in
different experimental environments has been carried out. The simulation of auto-ignition
of n-pentane in a rapid-compression machine shows good agreement with experimental
results. Experimentally derived and numerically predicted ignition delays of n-heptane/air
and n-decane/air mixtures in high-pressure shock tubes in a wide range of temperatures,
pressures and equivalence ratios agree very well. Concentration profiles of the main
products and intermediates of n-heptane, iso-octane and n-decane oxidation in jet-stirred
reactors at a wide range of temperatures and equivalence ratios are generally well
reproduced. Sensitivity and reaction flow analyses were performed for shock tube and jet-
stirred reactor environments, respectively, in an attempt to identify the most important
reactions under the relevant conditions of study. In addition, the ignition delay times of
different normal alkanes was numerically studied.

iii Zusammenfassung




Ein Computerprogramm zum automatischen Erzeugen von Mechanismem für die
Oxidation und Verbrennung von großen Kohlenwasserstoffen wurde in dieser Arbeit
erfolgreich modifiziert. Zu den Veränderungen zählen:
(1) Verbesserung der existierenden Reaktionsregeln für z. B. Reaktionen von
zyklischen Ethern und Aldehyden
(2) Implementierung von zusätzlichen Regeln in den Code, z. B. für Reaktionen der
Ketone, für die Bildung von zyklischen Hydroperoxiethern und für zusätzliche
Alkenereaktionen
(3) Ergänzung des C -C Untermechanismus durch Einbeziehung kleiner oxygenierte 1 4
Kohlenwasserstoffe, die vom neuen Programm automatisch erzeugt werden, bisher
aber nicht im manuell erstellten C -C Untermechanismus enthalten waren. 1 4

Zur Evaluierung der von diesem Code erzeugten Mechanismen wurden Ergebnisse aus
verschiedenartigen Experimenten simuliert. Die Simulation der Selbstzündung von n-
Pentane in einer schnellen Kompressionsmaschine zeigt eine gute Übereinstimmung mit
den experimentellen Ergebnissen. Experimentell abgeleitete und numerisch vorhergesagte
Zündverzögerungszeiten von n-Heptane/Luft und n-Dekan/Luft Mischungen in
Hochdruckstoßrohren über einen weiten Temperatur- und Druckbereich sowie
Mischungsverhältnis stimmen gut überein. Konzentrationsprofile der Haupt- und
Zwischenprodukte der n-Heptane, iso-Oktan und n-Dekan Oxidation in Rührreaktoren
werden über einen großen Temperatur- und Mischungsbereich gut wiedergegeben. Es
wurden zudem Sensitivitäts- und Reaktionsflußanalysen für Stoßwellenmessungen und
Rührreaktoren durchgeführt, um die wichtigsten Reaktionen unter den Bedingungen dieser
Arbeit zu identifizieren. Zusätzlich wurden Zündverzögerungszeiten für verschiedene n-
Alkane numerisch untersucht.


iv TABLE OF CONTENT



Abstract iii
Table of Content v
Chapter 1. Introduction 1
1.1 Background 1
1.2 The Status of Chemical Kinetic Models for Large Hydrocarbons 2
1.2.1 Pentane 3
1.2.2 Hexane 4
1.2.3 Heptane 4
1.2.4 Octane 6
1.2.5 Decane 6
1.2.6 Hexadecane 7
1.3 Automatic Generation of Chemical Kinetic Mechanisms 8
1.4 Objectives 10
1.5 The Outline of the Dissertation 11
Chapter 2. Chemical Kinetics 12
2.1 Rate Laws of Global Reactions 13
2.2 Elementary Reactions 15
2.2.1 The law of mass action 15
2.2.2 Types of elementary reactions 16
2.2.3 Forward and backward reactions 17
2.3 Temperature Dependence of Rate Coefficients 18
2.4 Pressure Dependence of Rate Coefficients 19
2.5 Thermodynamics and Kinetics 22
2.6 Reaction Mechanisms 24
2.6.1 Chain reactions 25
2.6.2 Analysis of reaction mechanisms 25
Chapter 3. Reaction Rules 28
3.1 High-Temperature Reactions 29
3.1.1 Unimolecular decomposition of alkanes 29
3.1.2 Abstraction of H atoms from alkanes 30
3.1.3 Decomposition of alkyl radicals 31
3.1.4 Isomerization of alkyl radicals 31
3.1.5 Oxidation of alkyl radicals to form alkenes 32
3.1.6 Decomposition of alkenes 32
v 3.1.7 Abstraction of allylic H atoms 32
3.1.8 Abstraction of vinylic H atoms 33
3.1.9 Abstraction of alkylic H atoms 33
3.1.10 Addition of H atoms to double bonds 34
3.1.11 Addition of CH radicals to double bonds 343
3.1.12 Addition of O atoms 34
3.1.13 Addition of OH radicals to double bonds 35
3.1.14 Addition of HO352
3.1.15 Retro-ene reactions 35
3.1.16 Isomerization of alkenyl radicals 35
3.1.17 Decomposition of allylic radicals 36
3.1.18 Decomposition of vinylic radicals 36
3.1.19 Decomposition of alkenyl radicals 36
3.2 Low-Temperature Reactions 37
3.2.1 Addition of alkyl radicals to molecular oxygen 37
3.2.2 Isomerization of alkylperoxy radicals 38
3.2.3 Abstraction of H atoms from alkanes by alkylperoxy radicals 38
3.2.4 Reaction of alkylperoxy radicals with HO 382
3.2.5 Reaction of alkyicals with H O 392 2
3.2.6 Homolytic O-O scission of hydroperoxydes 39
3.2.7 Decomposition of alkoxy radicals 40
3.2.8 Addition of hydroperoxy alkyl radicals to molecular oxygen 40
3.2.9 β scission of hydroperoxy alkyl radicals formed by the (1,4) 40
isomerization
3.2.10 Homolytic C-C scission of hydroperoxy alkyl radicals formed by the 40
(1,5) isomerization
3.2.11 Homoed by the 41
(1,6) and (1,7) isomerization
3.2.12 Homolytic O-O scission of hydroperoxy alkyl radicals with the radical 42
site at a carbon atom linked to oxygen atom
3.2.13 Oxidation of hydroperoxy alkyl radicals 42
3.2.14 Formation of cyclic ethers from hydroperoxy alkyl radicals 42
3.2.15 Isomerization of peroxy hydroperoxy alkyl radicals 42
3.2.16 Homolytic O-O scission of dihydroperoxy alkyl radicals 44
3.2.17 Formation of hydroperoxy cyclic ethers from dihydroperoxy radicals 44
3.2.18 Decomposition of ketohydroperoxides 44
● 3.2.19 Decomposition of O=R ″O 44
3.2.20 Abstraction of H atoms from cyclic ethers 44
vi 3.2.21 Decomposition of hydroperoxy cyclic ethers 45
3.2.22 Abstraction of H atoms from aldehydes or ketones 45
3.2.23 Decomposition of ketyl radicals 45
48Chapter 4. Automatic Generation of Reaction Mechanisms
4.1 Rule-Oriented Programming 48
4.2 Data structures 49
4.3 2-Dimensional Structural Input 50
4.4 Pattern Matching 50
Chapter 5. Mechanism Validation 53
5.1 N-pentane 53
5.2 N-heptane 54
5.2.1 Shock tube 54
5.2.2 Jet-stirred reactor 59
5.3 Iso-octane 67
5.4 N-decane 77
5.4.1 Shock tube 77
5.4.2 Jet-stirred reactor 79
Chapter 6. Mechanism Analyses 85
6.1 Sensitivity Analysis 85
6.1.1 Low temperature 85
6.1.2 Intermediate temperatures 88
6.1.3 High temperature 91
6.1.4 Different pressures 93
6.1.5 Different mixtures 93
6.1.6 Ignition delay times of normal alkanes 96
6.2 Reaction Flow Analysis 97
6.2.1 Reaction pathways 97

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents