Development and mechanical testing of a short intramedullary nail for fixation of femoral rotational osteotomy in cerebral palsy patients
16 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Development and mechanical testing of a short intramedullary nail for fixation of femoral rotational osteotomy in cerebral palsy patients

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
16 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Rotational osteotomy is frequently indicated to correct excessive femoral anteversion in cerebral palsy patients. Angled blade plate is the standard fixation device used when performed in the proximal femur, but extensile exposure is required for plate accommodation. The authors developed a short locked intramedullary nail to be applied percutaneously in the fixation of femoral rotational osteotomies in children with cerebral palsy and evaluated its mechanical properties. Methods The study was divided into three stages. In the first part, a prototype was designed and made based on radiographic measurements of the femoral medullary canal of ten-year-old patients. In the second, synthetic femoral models based on rapid-prototyping of 3D reconstructed images of patients with cerebral palsy were obtained and were employed to adjust the nail prototype to the morphological changes observed in this disease. In the third, rotational osteotomies were simulated using synthetic femoral models stabilized by the nail and by the AO-ASIF fixed-angle blade plate. Mechanical testing was done comparing both devices in bending-compression and torsion. Results The authors observed proper adaptation of the nail to normal and morphologically altered femoral models, and during the simulated osteotomies. Stiffness in bending-compression was significantly higher in the group fixed by the plate (388.97 ± 57.25 N/mm) than in that fixed by the nail (268.26 ± 38.51 N/mm) as torsional relative stiffness was significantly higher in the group fixed by the plate (1.07 ± 0.36 Nm/°) than by the nail (0.35 ± 0.13 Nm/°). Conclusions Although the device presented adequate design and dimension to fit into the pediatric femur, mechanical tests indicated that the nail was less stable than the blade plate in bending-compression and torsion. This may be a beneficial property, and it can be attributed to the more flexible fixation found in intramedullary devices.

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 7
Langue English
Poids de l'ouvrage 1 Mo

Extrait

Pagnano et al . BioMedical Engineering OnLine 2011, 10 :57 http://www.biomedical-engineering-online.com/content/10/1/57
R E S E A R C H Open Access Development and mechanical testing of a short intramedullary nail for fixation of femoral rotational osteotomy in cerebral palsy patients Rodrigo G Pagnano 1* , Rodrigo Okubo 1 and Jose B Volpon 2
* Correspondence: rpagnano@hotmail.com 1 Laboratory of Bioengineering, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil Full list of author information is available at the end of the article
Abstract Background: Rotational osteotomy is frequently indicated to correct excessive femoral anteversion in cerebral palsy patients. Angled blade plate is the standard fixation device used when performed in the proximal femur, but extensile exposure is required for plate accommodation. The authors developed a short locked intramedullary nail to be applied percutaneously in the fixation of femoral rotational osteotomies in children with cerebral palsy and evaluated its mechanical properties. Methods: The study was divided into three stages. In the first part, a prototype was designed and made based on radiographic measurements of the femoral medullary canal of ten-year-old patients. In the second, synthetic femoral models based on rapid-prototyping of 3D reconstructed images of patients with cerebral palsy were obtained and were employed to adjust the nail prototype to the morphological changes observed in this disease. In the third, rotational osteotomies were simulated using synthetic femoral models stabilized by the nail and by the AO-ASIF fixed-angle blade plate. Mechanical testing was done comparing both devices in bending-compression and torsion. Results: The authors observed proper adaptation of the nail to normal and morphologically altered femoral models, and during the simulated osteotomies. Stiffness in bending-compression was significantly higher in the group fixed by the plate (388.97 ± 57.25 N/mm) than in that fixed by the nail (268.26 ± 38.51 N/mm) as torsional relative stiffness was significantly higher in the group fixed by the plate (1.07 ± 0.36 Nm/°) than by the nail (0.35 ± 0.13 Nm/°). Conclusions: Although the device presented adequate design and dimension to fit into the pediatric femur, mechanical tests indicated that the nail was less stable than the blade plate in bending-compression and torsion. This may be a beneficial property, and it can be attributed to the more flexible fixation found in intramedullary devices.
Background Femoral anteversion is the anterior projection of the femoral neck related to the coro-nal plane. It develops prenatally and is approximately 40° at birth. Then, gradually, it decreases during the postnatal growth to a position of approximately 15° at skeletal maturity [1]. Failure of anteversion to decr ease is a common feature in children with cerebral palsy and is caused by muscle imbalance. This static deformity, associated
© 2011 Pagnano et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents