Multi-phase, multi-species reactive transport modeling as a tool for system analysis in geological carbon dioxide storage [Elektronische Ressource] / Ali Naderi Beni
161 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Multi-phase, multi-species reactive transport modeling as a tool for system analysis in geological carbon dioxide storage [Elektronische Ressource] / Ali Naderi Beni

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
161 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Multi-phase, multi-species reactive transportmodeling as a tool for system analysis ingeological carbon dioxide storageThe Faculty of Georesources and Materials Engineering ofRWTH Aachen Universitysubmitted byAli Naderi BeniMaster of Science in Petroleum Engineeringfrom Ben (Iran)in respect of the academic degree ofDoctor of Engineeringapproved thesisAdvisors: Univ.-Prof. Dr. rer. nat. Christoph ClauserPD Dr.-Ing. habil. Dr. rer. nat. Michael KühnDate of the Oral Examination:: 25 March 2011This thesis is available in electronic format on the university library’s website.Bibliographische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb-nb.de abrufbar. D 82 (Diss. RWTH Aachen University, 2011) Herausgeber: Univ.-Prof. Dr.ir. Dr.h.c. Rik W. De Doncker Direktor E.ON Energy Research Center Univ.-Prof. Dr. rer. nat. Christoph Clauser Applied Geophysics and Geothermal Energy E.ON Energy Research Center Mathieustr. 6 52074 Aachen Copyright Ali Naderi Beni Alle Rechte, auch das des auszugsweisen Nachdrucks, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten. Printed in Germany ISBN: 978-3-942789-01-1 1. Auflage 2011 Verlag: E.

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 21
Langue English
Poids de l'ouvrage 108 Mo

Extrait

Multi-phase, multi-species reactive transport
modeling as a tool for system analysis in
geological carbon dioxide storage
The Faculty of Georesources and Materials Engineering of
RWTH Aachen University
submitted by
Ali Naderi Beni
Master of Science in Petroleum Engineering
from Ben (Iran)
in respect of the academic degree of
Doctor of Engineering
approved thesis
Advisors: Univ.-Prof. Dr. rer. nat. Christoph Clauser
PD Dr.-Ing. habil. Dr. rer. nat. Michael Kühn
Date of the Oral Examination:: 25 March 2011
This thesis is available in electronic format on the university library’s website.Bibliographische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb-nb.de abrufbar.

D 82 (Diss. RWTH Aachen University, 2011)




Herausgeber:
Univ.-Prof. Dr.ir. Dr.h.c. Rik W. De Doncker
Direktor E.ON Energy Research Center

Univ.-Prof. Dr. rer. nat. Christoph Clauser
Applied Geophysics and Geothermal Energy
E.ON Energy Research Center
Mathieustr. 6
52074 Aachen





Copyright Ali Naderi Beni
Alle Rechte, auch das des auszugsweisen Nachdrucks, der auszugsweisen oder
vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der
Übersetzung, vorbehalten.

Printed in Germany

ISBN: 978-3-942789-01-1
1. Auflage 2011




Verlag:
E.ON Energy Research Center, RWTH Aachen University
Mathieustr. 6
52074 Aachen
Internet: www.eonerc.rwth-aachen.de
E-Mail: post_erc@eonerc.rwth-aachen.de




Herstellung:
Druckservice Zillekens
Am Bachpütz 4
52224 Stolberg Tomylatemother,myfather,andchildrenofjobAbstract
Geological storage of carbon dioxide (CO ) has been studied worldwide as a possible2
means for reducing CO emissions to the atmosphere. In this context, reservoir model-2
ing which provides both quantitative and qualitative predictions of reservoir behavior is a
key element for evaluating a CO test injection. Successful implementation of these meth-2
ods depends on the ability of predicting the physical behavior of the injected CO into the2
subsurface. The better understanding of sequestration and migration processes enables to
choose the best site for storage. However, this is not an easy task since coupling of hy-
drodynamic flow and mass transport in porous media is a very complex physical process.
Often phase changes are involved and often the flow is complicated by the presence of
chemical species. This thesis contributes to the current efforts to analyze numerically the
systems for CO underground storage in order to fill some of the scientific gaps identified in2
this field. Prediction of CO plume fate for evaluating CO test injections are performed.2 2
This is demonstrated in case studies for the Malmö site (Sweden) where a considerable
amount of data is available and for the Minden site (Germany) as a potential site with a
less than complete existing data set. It is shown that multi-component, multi-phase reac-
tive flow modeling has a high potential for quantifying and identifying different trapping
mechanisms and processes in CO storage operations. In particular, a few codes allow2
to account for the different mass transport processes. This turned out to be important for
simulations. The variation of the physical properties must not be neglected since it can in-
fluence strongly the results. Therefore, a comprehensive data set on seismic, geologic, and
geophysical properties form an excellent basis for reservoir modeling.
In addition to these data, other parameters must enter the numerical models. Very impor-
tant are relative permeabilities and capillary pressures, but data is generally sparse. With
these caveats and being aware of these constraints, the three-dimensional modeling show
that in the Malmö site dissolution trapping mechanism is dominant. However, sensitivity
analysis show that the results are in a sensitive range, meaning that a little increase or de-
crease in a parameter may have a large effect on the results. For example, it is shown how
relative permeability and capillary pressure may change the amount and extent of salt pre-
cipitation near the injection well ranging from little salt precipitation to a complete well
plugging. Further, grid refinement studies imply that simulations on too coarse a grid will
overestimate the plume extent. It is indicated that grid block sizes of 0.4 m and smaller are
sufficient. Grid resolution appears to be very important. However, it is neglected in many
studies and most of the existing models rely on coarse grids. Modeling results show that
ismall inclinations influence the results to some extent, mainly causing some asymmetry
of the CO -phase relative to the injection borehole. It indicates that layer inclinations of2
less than 2° may be assumed to be horizontal. Non-isothermal, multi-phase flow modeling
result also indicates that the temperature variation in question of 5 K at maximum does
not alter the fluid and solid material properties significantly and cooling effect due to the
Joule-Thomson expansion can be neglected.
Reservoir models can help to study the effect of different CO injection strategies and to2
predict the relevant processes. Simulation results indicate that higher injection rates may
delay or even inhibit salt plugging. Alternatively, salt precipitation can be reduced or even
prevented by practical measures such as injecting fresh water prior to gas.
The simulation results of the calcite dissolution experiment indicate that formations that
contain mainly carbonate minerals are less suitable for mineral sequestration because cal-
cite dissolves fairly rapidly (on the short-term period of tens of years) which liberates CO2
in dissolution. On the long term, instead, aluminous-silicate reactions dominate resulting
in precipitation of a significant amounts of secondary minerals. The reactive transport sim-
ulations for the Minden site indicate that after a long time (several hundred years) most
of the injected CO is fixed in newly formed carbonates such as dawsonite, ankerite, and2
siderite. It means that hydrodynamic and dissolution trapping mechanisms do not play a
role near the injection point and the areas far from the cap rock. Moreover, the estimates
of CO storage capacity per unit pore volume of the Bunter formation in the Minden site2
are comparable to those derived from quasi-similar calculations for the Bunter sandstone
in the UK sector of the North Sea Basin. The mineral reactions cause a relatively large
decrease of porosity and in turn a decrease of permeability in parts of the reservoir. The
latter is based on a cubic relationship between porosity and permeability.
The modeling results presented here reveal the importance and variations of different pro-
cesses with respect to many parameters and assumptions to be made in the modeling works
and, hence, for further improvements the provided recommendations might be helpful. In
this regard and with CO storage system analysis, this dissertation serves not only as a2
feasibility study of the potential sites even with a less than complete data set but also as
a guidance for operators. However, they are set up based on existing data. They also are
necessarily based on some assumptions such as relative permeability and capillary pressure
curves. The performance of these realistic simplified models, e. g. at Malmö, needs to be
tested through a series of both field and laboratory experiments. The degree of matching
will either confirm current simulations or indicate how modeling should be adjusted. The
ultimate aim is to demonstrate that the key modeling assumptions are corroborated by ob-
servations. In summary, these numerical simulations of reactive transport provide both a
better understanding of the fate of the CO plume in a reservoir in time and guidance for2
practical decisions.
This work was supported in part by the WestLB Foundation and E.ON Sverige Värmekraft.
iiZusammenfassung
Die geologische Speicherung von Kohlendioxid (CO ) wird weltweit als eine mögliche2
Maßnahme untersucht, um die CO -Emission in die Atmosphäre zu reduzieren. In diesem2
Zusammenhang stellen Reservoirmodellierungen ein Schlüsselelement zur Bewertung von
CO -Testeinspeisungen dar, indem sie sowohl quantitative als auch qualitative Vorhersagen2
des Reservoirverhaltens ermöglichen. Ein erfolgreicher Einsatz dieser Methoden hängt
von der Fähigkeit ab, das physikalische Verhalten des in den Untergrund injizierten CO2
vorherzusagen. Ein besseres Verständnis der Sequestrierungs- und Migrationsprozesse er-
möglicht die Wahl des besten Speicherstandortes. Dies ist allerdings keine einfache Auf-
gabe, da die Kopplung zwischen hydrodynamischer Strömung und Massentransport in
porösen Medien einen sehr komplexen physikalischen Prozess darstellt. Oftmals sind Pha-
senübergänge beteiligt und oftmals wird die Strömung durch die Anwesenheit von chemi-
schen Bestandteilen verkompliziert. Diese Arbeit trägt zu den laufenden Bemühungen bei,
die CO -Speicherung im Un

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents