Protein Chemical Shift Tensor Calculation with Bond Polarization Theory [Elektronische Ressource] : A New Approach for the Study of Orientation and Dynamics in Biological Systems / Igor Jakovkin. Betreuer: B. Luy
142 pages
English

Protein Chemical Shift Tensor Calculation with Bond Polarization Theory [Elektronische Ressource] : A New Approach for the Study of Orientation and Dynamics in Biological Systems / Igor Jakovkin. Betreuer: B. Luy

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
142 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Protein Chemical Shift Tensor Calculation withBond Polarization Theory: A New Approach forthe Study of Orientation and Dynamics inBiological SystemsZur Erlangung des akademischen Grades einesDOKTORS DER NATURWISSENSCHAFTEN(Dr. rer. nat.)Fakultät für Chemie und BiowissenschaftenKarlsruher Institut für Technologie (KIT) – UniversitätsbereichgenehmigteDISSERTATIONvonDipl.-Biochem. Igor Jakovkinaus St.-PetersburgDekan: Prof. Dr. Stefan BräseReferent: Prof. Dr. Burkhard LuyKorreferent: Prof. Dr. Anne S. UlrichTag der mündlichen Prüfung: 14. 07. 2011Table of Contents Table of Contents Table of contents I Overview and scope of this study 1 1. Introduction 4 1.1 Nuclear magnetic resonance spectroscopy ........................................................... 4 1.2 Chemical shift tensor ............................................................................................. 5 1.3 Spin-lattice and spin-spin relaxation times........................................................... 10 1.4 Dipolar coupling ................................................................................................... 12 1.5 Residual dipolar coupling ..................................................................................... 13 2. Protein chemical shift calculation 15 2.1 Ab initio route to chemical shift tensors and its limits ........................................... 15 2.2 Bond polarization theory ...................................

Sujets

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 31
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Protein Chemical Shift Tensor Calculation with
Bond Polarization Theory: A New Approach for
the Study of Orientation and Dynamics in
Biological Systems
Zur Erlangung des akademischen Grades eines
DOKTORS DER NATURWISSENSCHAFTEN
(Dr. rer. nat.)
Fakultät für Chemie und Biowissenschaften
Karlsruher Institut für Technologie (KIT) – Universitätsbereich
genehmigte
DISSERTATION
von
Dipl.-Biochem. Igor Jakovkin
aus St.-Petersburg
Dekan: Prof. Dr. Stefan Bräse
Referent: Prof. Dr. Burkhard Luy
Korreferent: Prof. Dr. Anne S. Ulrich
Tag der mündlichen Prüfung: 14. 07. 2011Table of Contents



Table of Contents


Table of contents I

Overview and scope of this study 1

1. Introduction 4
1.1 Nuclear magnetic resonance spectroscopy ........................................................... 4
1.2 Chemical shift tensor ............................................................................................. 5
1.3 Spin-lattice and spin-spin relaxation times........................................................... 10
1.4 Dipolar coupling ................................................................................................... 12
1.5 Residual dipolar coupling ..................................................................................... 13

2. Protein chemical shift calculation 15
2.1 Ab initio route to chemical shift tensors and its limits ........................................... 15
2.2 Bond polarization theory ...................................................................................... 23
15 132.3 N and C parameterization .............................................................................. 28
152.4 Crystalline tripeptides: the test case for N parameterization ............................. 30
132.5 Unbiased C parameterization for proteins ......................................................... 38
2.6 Application to ubiquitin ......................................................................................... 41
2.7 Chemical shift driven protein structure refinement ............................................... 44
2.8 Computational efficiency: BPT vs. DFT ............................................................... 49
2.9 Chemical shift and protein structure validation .................................................... 51

3. Dynamics and orientation of membrane peptides 56
3.1 Biological background.......................................................................................... 56
3.2 PISEMA spectroscopy ......................................................................................... 56
3.3 Macroscopically aligned samples ........................................................................ 57
3.4 Application to gramicidin A – the role of dynamics .............................................. 59
3.5 Molecular dynamics with orientational constraints ............................................... 69
3.6 Molecular dynamics simulation of gramicidin A ................................................... 70

I
Table of Contents



3.7 Local order tensors .............................................................................................. 75
3.8 Local order parameters in gramicidin A ............................................................... 78
3.9 PISEMA simulation for nontrivial cases ............................................................... 85

4. Dynamics of solid-state proteins 90
4.1 CSA order parameters ......................................................................................... 90
4.2 Application to thioredoxin..................................................................................... 92
4.3 Application to immunoglobulin-binding protein GB1 .......................................... 102
4.4 Protein collective motions in solid state ............................................................. 109

5. Methods 112
5.1 Molecular Modeling ........................................................................................... 112
5.2 BPT chemical shift calculation ........................................................................... 113
5.3 DFT chemical shift calculation ........................................................................... 114
5.4 Chemical shift driven geometry optimization ..................................................... 115
5.5 Molecular dynamics simulation .......................................................................... 115

6. Summary 118
6.1 Protein chemical shift calculation ....................................................................... 118
6.2 Dynamics and orientation of membrane peptides .............................................. 120
6.3 Dynamics of solid-state proteins ........................................................................ 121

List of abbreviations 123

References 125

Appendix A

Deutsche Zusammenfassung ..................................................................................... A
Ehrenwörtliche Erklärung............................................................................................ B
Lebenslauf .................................................................................................................. C
Danksagung ............................................................................................................... D
II
Overview and scope of this study


Overview and scope of this study

1Up to 30% of known proteins are embedded into biological membranes . Membrane
proteins play an important role in cell membrane adhesion, signal transduction and
membrane transport. The elucidation of membrane protein structures remains
challenging due to difficulties with their solubilization and crystallization. Solid-state
nuclear magnetic resonance spectroscopy (NMR) is a powerful tool for analysis of
2protein structure in membrane proteins and peptides . Unfortunately, in many cases
the connection between protein structure and function is unknown. The knowledge of
protein membrane orientation and dynamics can provide the missing link between
structure and function.

NMR chemical shift (CS) tensors yield a variety of information on protein structure,
dynamics and membrane orientation. Empirical methods for protein chemical shift
3calculation facilitate the prediction of torsion angles in protein backbone . A number
of recent reports demonstrate their potential for chemical shift driven structure
4,5,6elucidation . However, empirical methods can provide only isotropic chemical shift
values and not the full chemical shift tensors. Ab initio methods can compute the full
chemical shift tensors but they are computationally much too demanding for
7biopolymers . Semi-empirical methods offer a solution to this problem combining the
capacity of the full tensor calculation with low computational cost. The scope of this
8study is therefore to adapt the semi-empirical bond polarization theory (BPT) to
protein chemical shift tensor calculation and to apply such calculations to
interpretation of the solid-state NMR data.

The introductory chapter of this thesis provides a brief outline of the few NMR basic
concepts. The second chapter is dedicated to BPT protein chemical shift calculation
and protein chemical shift driven structure refinement. It explains the basics of the
bond polarization theory and deals with the evaluation and fine-tuning of the BPT
15 13parameterization for N and C chemical shift calculation. Test calculations and
comparison of the computational efforts with density functional theory (DFT)
calculations are presented for several biological systems including peptide crystals
and small globular protein ubiquitin. In addition BPT enables chemical shift gradient
1
Overview and scope of this study


calculation and consequently chemical shift driven geometry optimization. The
development of the protocol for chemical shift driven protein structure refinement with
BPT chemical shift gradients is also described in the second chapter.

After having presented isotropic chemical shift calculations in the second chapter, the
thesis proceeds to applications which require chemical shift tensor calculations.
15 1 15PISEMA spectroscopy correlating N chemical shift with H- N dipolar is a wide-
spread method for the study of peptide and protein orientation in biological
9membranes . In routine PISEMA applications the assignment of signals relies on a
priori assumptions about the chemical shift tensors and their orientation (i.e. all
tensors can be regarded as identical) and for data interpretation the molecule is
treated as a rigid body. This strategy is well-suited for rigid α-helical peptides but the
application to non-helical structures, molecules with DL-amino acids substitutions and
molecules with different dynamic behavior on different amino acid sites is not
possible in many cases. The third chapter deals with PISEMA spectra prediction
15using explicitly calculated N chemical shift tensors and molecular dynamics
simulations. Simultaneous determination of membr

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents