Quantum simulations for semiconductor quantum dots: from artificial atoms to Wigner molecules [Elektronische Ressource] / vorgelegt von Boris Reusch
124 pages
English

Quantum simulations for semiconductor quantum dots: from artificial atoms to Wigner molecules [Elektronische Ressource] / vorgelegt von Boris Reusch

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
124 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Quantum Simulations for SemiconductorQuantum Dots:From Arti cial Atoms to Wigner MoleculesI n a u g u r a l - D i s s e r t a t i o nzurErlangung des Doktorgrades derMathematisch-Naturwissenschaftlichen Fakult atder Heinrich-Heine-Universit at Dusseldorfvorgelegt vonBoris Reuschaus WiesbadenDusseldorfim M arz 2003Referent: Prof. Dr. Reinhold EggerKorreferent: Prof. Dr. Hartmut L owenTag der mundlic hen Prufung: 21.05.2003Gedruckt mit der Genehmigung der Mathematisch-NaturwissenschaftlichenFakult at der Heinrich-Heine-Universit at DusseldorfContents1 Introduction 12 Few-electron quantum dots 52.1 The single-electron transistor . . . . . . . . . . . . . . . . . . . . . . 62.2 Coulomb blockade and capacitance . . . . . . . . . . . . . . . . . . . 72.3 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4 Non-interacting eigenstates and shell lling . . . . . . . . . . . . . . . 122.5 Hund’s rule and ground-state spin . . . . . . . . . . . . . . . . . . . . 132.6 Brueckner parameter r . . . . . . . . . . . . . . . . . . . . . . . . . . 14s2.7 Strongly interacting limit: Wigner molecule . . . . . . . . . . . . . . 142.8 Classical electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.9 Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.10 Temperature and thermal melting . . . . . . . . . . . . . . . . . . . . 182.11 Few-electron arti cial atoms . . . . . . . . . . . . . . .

Sujets

Informations

Publié par
Publié le 01 janvier 2003
Nombre de lectures 17
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Quantum Simulations for Semiconductor
Quantum Dots:
From Arti cial Atoms to Wigner Molecules
I n a u g u r a l - D i s s e r t a t i o n
zur
Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakult at
der Heinrich-Heine-Universit at Dusseldorf
vorgelegt von
Boris Reusch
aus Wiesbaden
Dusseldorf
im M arz 2003Referent: Prof. Dr. Reinhold Egger
Korreferent: Prof. Dr. Hartmut L owen
Tag der mundlic hen Prufung: 21.05.2003
Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakult at der Heinrich-Heine-Universit at DusseldorfContents
1 Introduction 1
2 Few-electron quantum dots 5
2.1 The single-electron transistor . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Coulomb blockade and capacitance . . . . . . . . . . . . . . . . . . . 7
2.3 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Non-interacting eigenstates and shell lling . . . . . . . . . . . . . . . 12
2.5 Hund’s rule and ground-state spin . . . . . . . . . . . . . . . . . . . . 13
2.6 Brueckner parameter r . . . . . . . . . . . . . . . . . . . . . . . . . . 14s
2.7 Strongly interacting limit: Wigner molecule . . . . . . . . . . . . . . 14
2.8 Classical electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Temperature and thermal melting . . . . . . . . . . . . . . . . . . . . 18
2.11 Few-electron arti cial atoms . . . . . . . . . . . . . . . . . . . . . . . 19
2.12 Single-electron capacitance spectroscopy . . . . . . . . . . . . . . . . 21
2.13 Bunching of addition energies . . . . . . . . . . . . . . . . . . . . . . 22
2.14 Theoretical approaches for the bunching phenomenon . . . . . . . . . 24
2.15 Open questions addressed in this thesis . . . . . . . . . . . . . . . . . 26
3 Path-integral Monte Carlo simulation 27
3.1 Path-integral Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Markov chain and Metropolis algorithm . . . . . . . . . . . . 29
3.1.3 Discretized path integral . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 Trotter break-up and short-time propagator . . . . . . . . . . 31
3.1.5 Path-integral ring polymer . . . . . . . . . . . . . . . . . . . . 33
3.1.6 Monte Carlo observables . . . . . . . . . . . . . . . . . . . . . 34
3.1.7 Spin contamination . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.8 Fermionic sign problem . . . . . . . . . . . . . . . . . . . . . . 37
3.1.9 Monte Carlo error bars . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Tests for the PIMC simulation . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Isotropic clean quantum-dot Helium . . . . . . . . . . . . . . . 433.2.2 Finite temperature, zero interaction . . . . . . . . . . . . . . . 44
3.2.3 temp non-zero interaction . . . . . . . . . . . . 45
3.3 Trotter convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Trotter convergence for clean quantum-dot Helium . . . . . . 47
3.3.2 T conv for N = 2 with impurity . . . . . . . . . . 49
3.3.3 Trotter convergence for higher electron numbers . . . . . . . . 50
3.3.4 Convergence for other quantities . . . . . . . . . . . . . . . . . 52
3.3.5 General procedure . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 PIMC study for a quantum dot with a single attractive impurity . . . 55
3.4.1 Ground-state energies and spins . . . . . . . . . . . . . . . . . 55
3.4.2 Charge and spin densities . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Impurity susceptibility - nite-size Kondo e ect? . . . . . . . . 68
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4 Unrestricted Hartree-Fock for quantum dots 73
4.1 Hartree-Fock method . . . . . . . . . . . . . . . . . . . . 74
4.1.1 Hartree-Fock Slater determinant . . . . . . . . . . . . . . . . . 74
4.1.2ock orbitals . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.3 Breaking of rotational symmetry . . . . . . . . . . . . . . . . 75
4.1.4 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.5 Orientational degeneracy . . . . . . . . . . . . . . . . . . . . . 77
4.2 Unrestricted Hartree-Fock for quantum-dot Helium . . . . . . . . . . 78
4.2.1 Two-electron Slater determinant . . . . . . . . . . . . . . . . . 78
4.2.2 Di eren t HF approximations . . . . . . . . . . . . . . . . . . . 78
4.2.3 UHF one-particle densities . . . . . . . . . . . . . . . . . . . . 80
4.2.4 UHF orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.5 UHF two-particle densities . . . . . . . . . . . . . . . . . . . . 85
4.3 Unrestricted Hartree-Fock for higher electron numbers . . . . . . . . 86
4.3.1 UHF energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 HF densities: Even-odd e ect . . . . . . . . . . . . . . . . . . 90
4.3.3 Closer look at three electrons . . . . . . . . . . . . . . . . . . 92
4.3.4 Lattice Hamiltonian and localized orbitals . . . . . . . . . . . 94
4.3.5 Geometric crossover for six electrons . . . . . . . . . . . . . . 97
4.3.6 Seven- and eight-electron Wigner molecules . . . . . . . . . . 98
4.4 Unrestricted Hartree-Fock with a magnetic eld . . . . . . . . . . . . 100
4.4.1 Quantum dot energies with eld . . . . . . . . . . . 100
4.4.2 UHF densities with magnetic eld . . . . . . . . . . . . . . . . 102
4.4.3 Relation to other results . . . . . . . . . . . . . . . . . . . . . 103
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5 Conclusions 107
Bibliography 1111 Introduction
The physics of a few or many identical quantum particles is a fascinating and chal-
lenging subject. The interplay of interactions and (anti-)symmetry leads to many
unexpected e ects. However, the theoretical description of complex systems is dif-
cult. Whereas the one- or two-particle problem can be addressed analytically, for
more than two particles, the treatment, i.e. trying to solve the Schr odinger equation
for a realistic model, mostly has to be numerical. Here, we have to di eren tiate: exact
methods are often computationally very expensive and their results might be hard
to interpret. Approximate methods can be suggestive but also misleading. Their
validity has to be checked by comparing them to exact results.
On the other hand, in the experiment there is usually a large number of particles
and it is di cult to isolate controllably a system which consists of a few particles. In
the last fteen years progress in semiconductor microfabrication has made it possible
to con ne a very small number of electrons in so-called nanostructures, e.g. quantum
wells or quantum wires. Modern technology allows for de ning clean structures with
exact con nemen t which is often reduced in dimensionality. This means that electrons
are moving freely only in one or two dimensions. When the con nemen t is strong in
all three spatial dimensions we speak of zero-dimensional systems or quantum dots.
These nite electron systems have a lot in common with atoms where the con-
nemen t is given by the strong attractive potential of the nucleus. Yet for quantum
dots one cannot only control the electron number, but also engineer their shape and,
by doping the host material and tiny gate electrodes, their electronic density. This
is why quantum dots are also called arti cial atoms. In real atoms the density is
very high, and the e ect of the mutual Coulomb repulsion of electrons is rather small
against the attractive force from the nucleus. In contrast, the electronic density in
quantum dots can be much lower. While electrons are on average further apart from
each other, the electron-electron interaction becomes more important in comparison
to the con nemen t strength.
In quantum dots one can thus tune the Coulomb repulsion of a few con ned elec-
trons. This makes them very interesting physical systems because they allow us
to study correlation e ects which cannot be addressed in a controlled way in other
physical systems.
In this thesis we investigate a model of interacting electrons which are restricted to
move only in two dimensions. Furthermore, they are trapped by a harmonic potential
2V / r . We illustrate this simple but realistic model for two limiting cases in Fig. 1.1.
11 Introduction
?
Fig. 1.1: Two-dimensional electrons in an isotropic parabolic potential. For vanishing
Coulomb interaction the energetic shells of the harmonic oscillator are lled. Strongly
interacting electrons form a small crystal, a so-called Wigner molecule, to minimize their
mutual repulsion. In the present thesis we study the crossover between these two pictures.
The left hand side illustrates the situation for negligible interaction (strong con ne-
ment). The electrons are lled into the oscillator states according to the degeneracy
of the 2D oscillator. Each orbital can be occupied with spin up and down. This
leads to an energetic shell lling, with open and closed shells. For a small interaction
one nds the lifting of some degeneracies and Hund’s rule in analogy to conventional
atomic physics. Therefore this electron system can be regarded as an arti cial atom
where the external parabolic potential mimics the attraction of the nucleus.
The right hand side depicts the regime of ve

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents