Commutator Theory  Tutorial, Part 1
55 pages
English

Commutator Theory Tutorial, Part 1

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
55 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

The Modular CommutatorApplication 1Commutator TheoryTutorial, Part 1Á. SzendreiDepartment of MathematicsUniversity of Colorado at BoulderConference on Order, Algebra, and LogicsNashville, June 12–16, 2007Á. Szendrei Commutator Theory Tutorial, Part 1The Modular CommutatorApplication 1Algebras, VarietiesA, an algebraCongruences of A0= kernels of homomorphisms A→ A= equivalence relations on A that are subalgebras of A ACon(A) is a latticeVariety: equationally definable class of algebrasÁ. Szendrei Commutator Theory Tutorial, Part 1The Modular CommutatorApplication 1Algebras, VarietiesA, an algebraCongruences of A0= kernels of homomorphisms A→ A= equivalence relations on A that are subalgebras of A ACon(A) is a latticeVariety: equationally definable class of algebrasÁ. Szendrei Commutator Theory Tutorial, Part 1The Modular CommutatorApplication 1Congruence Modular VarietiesA varietyV iscongruence modular (CM) ifV |= → (∨)∧ = ∨(∧);Concongruence distributive (CD) ifV |= (∨)∧ = (∧)∨(∧);Concongruence permutable (CP) ifV |= = .ConCD =⇒ CM, CP =⇒ CMExamples of CM varieties: varieties oflattices, algebras with lattice reducts;implication algebras;groups, algebras with group reducts (rings, modules);quasigroups.Á. Szendrei Commutator Theory Tutorial, Part 1The Modular CommutatorApplication 1Congruence Modular VarietiesA varietyV iscongruence modular (CM) ifV |= → (∨)∧ = ∨(∧);Concongruence ...

Informations

Publié par
Nombre de lectures 10
Langue English

Extrait

TheModularCommuatotArppilacitno1SzÁ.drenhToetarommtuieoCart1al,PtoriryTu
Commutator Theory Tutorial, Part 1
Á. Szendrei
Department of Mathematics University of Colorado at Boulder
Conference on Order, Algebra, and Logics Nashville, June 12–16, 2007
tatupArocilpoitaThodeMarulmmCon1mmCoeidrenSzÁ.
A, an algebra
Congruences ofA = kernels of homomorphismsAA0 = equivalence relations onAthat are subalgebras ofA×A
Con(A)is a lattice
Variety: equationally denable class of algebras
t1
Algebras, Varieties
,ParrialuTotoeyrrohTtuta
pprAcalionti1TheoMudalCrmoumatotroTyTrehai,lturoreiCzendtatoommuS.ÁrtPa
Algebras, Varieties
A, an algebra
1
Variety: equationally denable class of algebras
Congruences ofA = kernels of homomorphismsAA0 = equivalence relations onAthat are subalgebras ofA×A
Con(A)is a lattice
ummootatdnezCier.SÁ
Examplesof CM varieties: varieties of lattices, algebras with lattice reducts; implication algebras; groups, algebras with group reducts (rings, modules); quasigroups.
aPtr1
CD=CM, CP=CM
A varietyVis congruence modular(CM) if V |=Conαγ(αβ)γ=α(βγ); congruence distributive(CD) if V |=Con(αβ)γ= (αγ)(βγ); congruence permutable(CP) if V |=Conαβ=βα.
utorial,rTheoryTruenCongion1icatpAlptarommturaoCulodeMThesraVriteioMecalud
sieVaaretrilicationtatorAppcnMedoluC1norgeuummoCraludoMehT
CD=CM, CP=CM
Examplesof CM varieties: varieties of lattices, algebras with lattice reducts; implication algebras; groups, algebras with group reducts (rings, modules); quasigroups.
otuTlairraP,
A varietyVis congruence modular(CM) if V |=Conαγ(αβ)γ=α(βγ); congruence distributive(CD) if V |=Con(αβ)γ= (αγ)(βγ); congruence permutable(CP) if V |=Conαβ=βα.
1tutatCommeoryorTh.ÁrdiezSne
orAputatCommularMedohTiearrVladuMoceenurgnoC1noitacilpestiÁPal,1rt
Examplesof CM varieties: varieties of lattices, algebras with lattice reducts; implication algebras; groups, algebras with group reducts (rings, modules); quasigroups.
A varietyVis congruence modular(CM) if V |=Conαγ(αβ)γ=α(βγ); congruence distributive(CD) if V |=Con(αβ)γ= (αγ)(βγ); congruence permutable(CP) if V |=Conαβ=βα.
CD=CM, CP=CM
otTrehroTyturoai.SzendreiCommuta
endrÁ.SzritoTuryt1ar,PaltummoCieoehTrota
CD=CM, CP=CM
Examplesof CM varieties: varieties of lattices, algebras with lattice reducts; implication algebras; groups, algebras with group reducts (rings, modules); quasigroups.
A varietyVis congruence modular(CM) if V |=Conαγ(αβ)γ=α(βγ); congruence distributive(CD) if V |=Con(αβ)γ= (αγ)(βγ); congruence permutable(CP) if V |=Conαβ=βα.
doMecneurgnoC1nosieetriVaarulTheModularComumatotArppilacit
TheMseiteiarrVladuMoceenruoCgnoi1ncitapAlpatormmutarCoodulehTrotatrotuTyrortPal,ia
Examplesof CM varieties: varieties of lattices, algebras with lattice reducts; implication algebras; groups, algebras with group reducts (rings, modules); quasigroups.
A varietyVis congruence modular(CM) if V |=Conαγ(αβ)γ=α(βγ); congruence distributive(CD) if V |=Con(αβ)γ= (αγ)(βγ); congruence permutable(CP) if V |=Conαβ=βα.
CD=CM, CP=CM
1erCimoumÁS.ezdn
dnerS.ezÁpprAcalimuomtotaTPSHroehnoitehT1oMudalCrTehgruewCondSkeemancnseumatCimoehrootTroriayTutrt1l,Pa
Commutator theory is a tool for understanding skew congruences in CM varieties.
Congruences ofA: product congruences:θ=Qiθi,θiCon(Ai) A=QAii skew congruences: all others
V(K)3AAsdQiAi,Ai=pri(A)Bi∈ K
Corollary.The variety generated by a classKof algebras is V(K) =HSP(K).
Birkhoff’s HSP Theorem.Vis a variety⇐⇒HSP(V) =V
orheutyTiaorPal,1tr
Congruences ofA: product congruences:θ=Qiθi,θiCon(Ai) A=QAii skew congruences: all others
V(K)3AAsdQiAi,Ai=pri(A)Bi∈ K
Corollary.The variety generated by a classKof algebras is V(K) =HSP(K).
Birkhoff’s HSP Theorem.Vis a variety⇐⇒HSP(V) =V
Commutator theory is a tool for understanding skew congruences in CM varieties.
Á.SzednerCimoumatotTrommularCrApptatooMudTehorheanemkedSonwCacilnoitehT1TPSHrgeucnse
rgeuCwnocnseheorHSPTdSkeemanacilppArehT1noitrCladuMototamuomTeh
Congruences ofA: product congruences:θ=Qiθi,θiCon(Ai) A=QAii skew congruences: all others
V(K)3AAsdQiAi,Ai=pri(A)Bi∈ K
Corollary.The variety generated by a classKof algebras is V(K) =HSP(K).
Birkhoff’s HSP Theorem.Vis a variety⇐⇒HSP(V) =V
Commutator theory is a tool for understanding skew congruences in CM varieties.
aP,l1trÁoriayTutheortorTumatCimodnerS.ez
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents