Spreading and precoding for wireless MIMO-OFDM systems [Elektronische Ressource] / von Doris Yasmou Yacoub
185 pages
English

Spreading and precoding for wireless MIMO-OFDM systems [Elektronische Ressource] / von Doris Yasmou Yacoub

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
185 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

SpreadingandPrecodingforWirelessMIMO-OFDMSystemsDISSERTATIONzur Erlangung des akademischen GradeseinesDOKTOR-INGENIEURS(DR.-ING.)der Fakulta¨t fur¨ Ingenieurwissenschaftenund Informatik der Universita¨t UlmvonDORISYASMOUYACOUBAUS HELIOPOLIS/KAIRO1.Gutachter: Prof. Dr.–Ing. Jur¨ gen Lindner2.Gutachter: Prof. Dr. rer. nat. Dr. h. c. Hermann RohlingAmtierender Dekan: Prof. Dr. rer. nat. Helmuth PartschUlm, 13. Juni 2008AcknowledgmentsFirst,IwouldliketoexpressmywarmandsinceregratitudetomysupervisorProfessor Ju¨rgen Lindner for giving me the opportunity to join his researchgroup at the Institute of Information Technology, Ulm University as wellas for his understanding, personal guidance, and for his important andunfailing support throughout this work.IalsowishtoexpressmysincerethankstoProfessorHermannRohling,Headof the Telecommunications Institute at Technische Universita¨t Hamburg-Harburg, not just for being a co-reviewer of this thesis, but also for givingme the opportunity to participate in the OFDM-Workshop for several yearsof which I have very fond memories.My warm thanks are also due to Dr. Werner G. Teich for his sincere adviceand friendly help. His discussions about my work have always been veryhelpful.I also wish to give a special thanks my colleague and friend Ivan Perisafor his support throughout those years. My sincere thanks are also due toall my colleagues for many valuable discussions and for proof-reading thisthesis.

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 12
Langue English
Poids de l'ouvrage 2 Mo

Extrait

SpreadingandPrecodingforWireless
MIMO-OFDMSystems
DISSERTATION
zur Erlangung des akademischen Grades
eines
DOKTOR-INGENIEURS
(DR.-ING.)
der Fakulta¨t fur¨ Ingenieurwissenschaften
und Informatik der Universita¨t Ulm
von
DORISYASMOUYACOUB
AUS HELIOPOLIS/KAIRO
1.Gutachter: Prof. Dr.–Ing. Jur¨ gen Lindner
2.Gutachter: Prof. Dr. rer. nat. Dr. h. c. Hermann Rohling
Amtierender Dekan: Prof. Dr. rer. nat. Helmuth Partsch
Ulm, 13. Juni 2008Acknowledgments
First,Iwouldliketoexpressmywarmandsinceregratitudetomysupervisor
Professor Ju¨rgen Lindner for giving me the opportunity to join his research
group at the Institute of Information Technology, Ulm University as well
as for his understanding, personal guidance, and for his important and
unfailing support throughout this work.
IalsowishtoexpressmysincerethankstoProfessorHermannRohling,Head
of the Telecommunications Institute at Technische Universita¨t Hamburg-
Harburg, not just for being a co-reviewer of this thesis, but also for giving
me the opportunity to participate in the OFDM-Workshop for several years
of which I have very fond memories.
My warm thanks are also due to Dr. Werner G. Teich for his sincere advice
and friendly help. His discussions about my work have always been very
helpful.
I also wish to give a special thanks my colleague and friend Ivan Perisa
for his support throughout those years. My sincere thanks are also due to
all my colleagues for many valuable discussions and for proof-reading this
thesis.
Last but not least, my warm and loving thanks to my husband Hendrik
Roscher for his unceasing support and encouragement throughout.
Doris Y. Yacoub
Ulm, June 2008Contents
1 Introduction 1
2 TheoreticalBackground 3
2.1 MIMO Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Orthogonal Frequency Division Multiplexing. . . . . . . . . . . . 5
2.2.1 SISO-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 MIMO-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Correlated MIMO-OFDM Channel Model . . . . . . . . . . . . . . 16
2.4 Effect of Antenna Correlations . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Channel Condition Number. . . . . . . . . . . . . . . . . . 19
2.4.2 Diversity and Correlation Measures . . . . . . . . . . . . . 19
2.5 Block Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Hard Decision Equalizers . . . . . . . . . . . . . . . . . . . 23
2.5.2 Soft Decision Equalizers . . . . . . . . . . . . . . . . . . . 25
2.6 Iterative Equalization and Decoding . . . . . . . . . . . . . . . . . 29
2.7 Test Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 Spreading 41
3.1 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Space Time and Space Frequency Codes . . . . . . . . . . . . . . 44
3.3 Spreading Criteria for MIMO-OFDM . . . . . . . . . . . . . . . . . 46
3.4 MC-Code Division Multiplexing . . . . . . . . . . . . . . . . . . . 48
3.5 MC-Cyclic Antenna Frequency Spreading . . . . . . . . . . . . . 49
3.6 Spreading, Matched Filter Bound and Interference . . . . . . . . 59
3.6.1 Effect of Antenna Correlations on Interference and MFB . 62
3.6.2 Asymptotic Behavior of α and β . . . . . . . . . . . . . . . 66
3.6.3 Effect of Interference Distribution on the BER . . . . . . . 70
IContents
3.7 Rotated MC-CAFS . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.1 Rotations Type I . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7.2 Rotations Type II . . . . . . . . . . . . . . . . . . . . . . . . 73
3.8 Coded Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.A Appendix to Chapter3 . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.A.1 ExpectedValuesofFunctionsofCorrelatedComplexRan-
dom Variable for Kronecker Correlation Model . . . . . . . 85
3.A.2 Expected values of α, β and the var(r¯) . . . . . . . . . . . . 87
4 Precoding 91
4.1 Linear Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Full Channel Knowledge at the Transmitter . . . . . . . . . . . . 93
4.3 Partial Channel Knowledge at the Transmitter . . . . . . . . . . 94
4.3.1 Flat Fading Channels . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Frequency Selective Channels . . . . . . . . . . . . . . . . 96
4.4 Uncoded Transmission . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Imperfect Transmit Correlation Knowledge . . . . . . . . . 102
4.4.2 Different Antenna Correlation at each Channel Tap . . . 105
4.5 Coded Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.A Appendix to Chapter4 . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.A.1 Antenna Correlations in Frequency Domain . . . . . . . . 120
4.A.2 BER curves and EXIT-Charts . . . . . . . . . . . . . . . . 121
5 MIMOChannelCapacity: TheoryversusMeasurement 131
5.1 MIMO Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . 131
5.1.1 No channel knowledge at the transmitter . . . . . . . . . . 132
5.1.2 Full channel knowledge at the transmitter . . . . . . . . . 134
5.1.3 Partial channel knowledge at the transmitter . . . . . . . 135
5.1.4 Impact of Antenna Correlations on MIMO Capacity . . . . 136
5.1.5 Impact of Line of Sight on MIMO Capacity . . . . . . . . . 136
5.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Measured Channel Capacity . . . . . . . . . . . . . . . . . . . . . 141
5.4 Two Path Channel Model . . . . . . . . . . . . . . . . . . . . . . . 145
5.5 Antenna Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6 SummaryandConclusion 153
IIContents
A MatrixBasics 157
A.1 Matrix Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.1.1 Inverse, Transpose and Hermitian . . . . . . . . . . . . . . 157
A.1.2 Trace, Determinant and Frobenious Norm . . . . . . . . . 158
A.2 Mathematical Definitions . . . . . . . . . . . . . . . . . . . . . . . 159
A.2.1 Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . 159
A.2.2 Hadamard Product . . . . . . . . . . . . . . . . . . . . . . . 159
B MathematicalNotations,SymbolsandListofAbbreviations 161
IIIContents
IVChapter1
Introduction
In recent years, multiple input multiple output (MIMO) systems have gained
considerableattentionduetotheirpotentialofachievingveryhighdatarates
and for providing a new diversity, spatial diversity, to the communication
system. Multicarrier (MC) transmission schemes on the other hand are con-
sidered to be promising candidates for the fourth generation (4G) of mobile
communications due to their efficient utilization of the available bandwidth,
thus also allowing for high data rates. Orthogonal frequency division multi-
plexing (OFDM) is one of several MC variants and is a well-known technique
used in broadcast media like, e.g. European terrestrial digital television
(DVB-T) and digital audio broadcasting (DAB), and in wireless local area net-
works (WLAN). Thus, MIMO-OFDM transmission schemes, which offer both
spatial and frequency diversity, have become an important area of research.
The goal of this work is to introduce and present new methods that exploit
both the frequency and spatial diversities, i.e. utilize all diversity branches
provided by MIMO-OFDM, in order to improve the system performance. Be-
fore we proceed to give an outline of this dissertation, we would like to give a
short analogy between the system considered here and the game of chance,
Roulette. Rouletteisthefrenchwordfor smallwheelandisagamblinggame
11 Introduction
where a wheel is spun in one direction, and a ball in the opposite. The ball
finally falls on the wheel and into one of the 38 colored and numbered holes
on it. Players can place their bets, for example, on the number of the hole
the ball might land in or on a range of holes. Without any knowledge about
the ball’s speed or the Roulette wheel’s rotational speed, any hole on the
wheel is equally probable from the player’s point of view and he/she might
just as well bet on any of 38 holes or any range of holes. However, if – as
the physics student Farmer did in 1978 – the player had knowledge of the
initial ball’s speed and the wheel’s rotational speed, the range where the ball
might fall can be limited to a small range, a sector of the wheel. The player
then has a much better chance of winning. In the best case, when all the
parameters are known, the hole where the ball falls can be fully predicted
and the player then only needs to bet on this one hole. Our communication
system can be compared to the Roulette wheel and ball and our transmitted
symbols to the bets placed by the players. If nothing is known about the
communication channel at the transmitter, the best one can do is to trans-
mit all signals equally (bets) over all diversity branches (all Roulette holes). If
partial

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents