Strongly correlated micro-nano-domains of functional lipids for geometrical control of dynamic cell adhesion [Elektronische Ressource] / vorgelegt von Jochen Oelke
145 pages
English

Strongly correlated micro-nano-domains of functional lipids for geometrical control of dynamic cell adhesion [Elektronische Ressource] / vorgelegt von Jochen Oelke

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
145 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Strongly Correlated Micro/Nano-Domains of Functional Lipids for Geometrical Control of Dynamic Cell Adhesion Dissertation zur Erlangung des Doktorgrades der mathematisch-naturwissenschaftlichen Fakultät der Universität Augsburg, vorgelegt von Jochen Oelke Institut für Physik der Universität Augsburg Lehrstuhl für Experimentalphysik I Erster Gutachter: Univ.-Prof. Dr. Achim Wixforth Zweiter Gutachter: Univ.-Prof. Dr. Motomu Tanaka Tag der Einreichung: 10.10.2008 Tag der mündlichen Prüfung: 21.11.2008 i i Meiner Familie i ii i v p Table of Contents Summary xi Introduction 1 5 1 Materials and Methods 1.1 Materials………………………………………………………………….. 5 1.1.1 Fluorinated Amphiphilic Molecules……………………………… 5 1.1.2 Mannose-Binding Cells and Bacteria………………..…………… 6 1.1.3 Substrates………………………………………….……………… 6 1.1.4 Chemicals and Buffers……………………………….…………… 7 1.2 Film Balance……………………………………………….…………..... 9 1.2.1 Fluorinated Amphiphilic Molecules……………………………… 9 10 1.2.2 -Area Isotherms………………………………….……………… 1.2.3 Surface Potential V of Langmuir Monolayers……………………. 11 1.2.

Sujets

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 23
Langue English
Poids de l'ouvrage 22 Mo

Extrait





Strongly Correlated Micro/Nano-Domains
of Functional Lipids for Geometrical Control
of Dynamic Cell Adhesion




Dissertation zur Erlangung des Doktorgrades
der mathematisch-naturwissenschaftlichen Fakultät
der Universität Augsburg, vorgelegt von
Jochen Oelke














Institut für Physik
der Universität Augsburg
Lehrstuhl für Experimentalphysik I





























Erster Gutachter: Univ.-Prof. Dr. Achim Wixforth
Zweiter Gutachter: Univ.-Prof. Dr. Motomu Tanaka

Tag der Einreichung: 10.10.2008
Tag der mündlichen Prüfung: 21.11.2008




i i













Meiner Familie




















i ii
































i v

Table of Contents

Summary xi

Introduction 1

5 1 Materials and Methods
1.1 Materials………………………………………………………………….. 5
1.1.1 Fluorinated Amphiphilic Molecules……………………………… 5
1.1.2 Mannose-Binding Cells and Bacteria………………..…………… 6
1.1.3 Substrates………………………………………….……………… 6
1.1.4 Chemicals and Buffers……………………………….…………… 7
1.2 Film Balance……………………………………………….…………..... 9
1.2.1 Fluorinated Amphiphilic Molecules……………………………… 9
10 1.2.2 -Area Isotherms………………………………….………………
1.2.3 Surface Potential V of Langmuir Monolayers……………………. 11
1.2.4 Langmuir-Blodgett Deposition (LB) ……………..……………… 12
1.2.5 Langmuir-Schaeffer Deposition (LS) ……………………………. 13
1.3 Fluorescence Microscopy……………………………………………....... 15
1.4 Effective Interparticle Potential – Potential of Mean Force……..………. 16
1.4.1 Image Processing…………………………………………………. 17
1.4.2 Radial Distribution Function g(r)………………...………………. 18
1.4.3 Potential of Mean Force -ßw(r) …………………..……………… 19
1.4.4 Molecular Spring Model……... …………………..……………… 20
1.5 Grazing Incidents X-Ray Diffraction (GIXD) ……………...…………… 21
1.5.1 Diffraction Geometry…..…... ……………………….…………… 21
1.5.1 Experimental Setup……..…... …………………………………… 23

2 Two-Dimensional Colloidal Crystals of Self Assembled Fluorinated 25
Lipid Domains
2.1 Introduction…………………………………………………………......... 25
2.2 Monolayer Transfer and Image Processing………………………………. 27
2.2.1 Fast Fourier Transform (FFT) of Mixed Monolayer Images…….. 28
2.2.2 Size Distribution and Mean Diameter <d >………...…………. 29 FL17
p vi

2.3 X-Ray Measurements…………………………………………………….. 30
2.3.1 Analyzer Crystal Setup……………………………...……………. 30
2.3.2 Crystal Size – The Scherrer Equation…………….………………. 33
2.4 Nearest Neighbor Distribution Function p(r)……………...…………….. 35
2.5 Radial Distribution Function g(r)………………………..………………. 37
2.6 Micro-Domain Interaction Potential -ßw(r)…………….……..…………. 39

3 Influence of Molecular Structure on the Micro-/Nano-Domains of 41
Fluorinated Lipids: Fine-tuning of Domain Size and Distribution
3.1 Introduction…………………………………………………………......... 41
3.2 Theory of Lipid Domain Formation ……………..………………..…....... 42
3.3 Fluorinated Molecule/DOPC Monolayer at the Air/Water Interface......... 44
3.4 Influence of Chain Length………………………………………….......... 45
3.4.1 Instabilities of FL10 Micro-Domains………………...…..………. 46
3.4.2 Mean Micro-Domain Diameter <d > and Nearest Neighbor FLn
Distance <r >………………...………………………..………. 47 FLn
3.4.3 Radial Distribution Function g (r) and the Potential of Mean FLn
Force –ßw (r)………………...…………………………...…….. 49 FLn
3.4.4 GIXD Measurements………………………………...……...……. 51
3.4.5 Surface Potential Measurements….……………...……...……....... 52
3.4.6 Comparison to “Equivalent Dipole Model”….………...…………. 52
3.5 Influence of Number of Chains….………………………………….......... 56
3.5.1 Mean Micro-Domain Diameter <d > and Nearest Neighbor Fn10
Distance <r >……………...…………………………...……… 57 Fn10
3.5.2 Radial Distribution Function g (r) and the Potential of Mean Fn10
Force –ßw (r)…………...……………………………..………. 58 Fn10
3.5.3 GIXD Measurements……………………………...……..………. 59
3.6 Influence of Polar Head Groups.…………………………………........... 60
3.6.1 Mean Micro-Domain Diameter <d > and Nearest Neighbor FL10n
Distance <r >………………..…………………………..…… 61 FL10n
3.6.2 Radial Distribution Function g (r) and the Potential of Mean FL10n
Force –ßw (r)……………...………………………………….. 62 FL10n
3.6.3 GIXD Measurements………………………...………...…………. 63
3.6.4 Cell Incubation Experiment.…………………………...…………. 63



vi
vii


4 Application of Fine-Tunable Artificial Lipid Domains in
Cell Biophysics: Combination with Flat-μ-Fluidics Technology 65
4.1 Introduction……………………………………………..……………...... 65
4.2 μ-Fluidic Pumping - Acoustic Streaming ………..…………………........ 66
4.2.1 Acoustic Waves in Solids…………………….……...…...………. 66
4.2.2 Bulk Acoustic Waves and Surface Acoustic Waves……………... 68
4.2.3 Inverse Piezoelectric Effect – Interdigital Transducer (IDT…...… 69
4.2.4 Acoustic Streaming in Fluids….....……………………….…....… 71
4.3 Fluidics in Flat-μ-Fluidic Channels………………………………............ 74
4.3.1 Theory of viscous flow – The Navier-Stokes Equation.................. 74
4.3.2 Flat-μ-Fluidic Channel Layout…………………………….……... 75
4.3.3 Finite Elements Model (FEM)………………………….….…..… 76
4.4 Experimental Components and Setup………………...…..………........... 79
4.4.1 Piezoelectric Crystal and Electric Circuit Layout…..………..…… 79
4.4.2 Transfer of Asymmetric, Position Selective Deposited Lipid
Bilayers into Flat-μ-Fluidic Channels…………………….……… 80
4.4.3 High Frequency Contact Device and Microscope Setup……….… 82
4.5 Flat μ-Fluidic Experiments………………………………..……..………. 84
4.5.1 Share Rate ∂u/∂z of the Flat-μ-Fluidics Setup…..……….......…… 84
4.5.2 Preliminary Experiment with Bacteria……..…………….……..… 86

87 5 Conclusion

6 Outlook 91

A Appendix 93

121 Bibliograpy









vii
viii



































viii

List of Figures

1 Schematic illustration of a cellular membrane…………….......…...………... 1
2 Known functional micro-domains..........…………....................................... 2
3 Supported membranes that display fluorinated lipids.………......…………. 4

1.1 Chemical structure of the fluorinated amphiphilic molecules......................... 5
1.2.1 Two-barrier Langmuir film balance with surface pressure sensor.................. 10
1.2.2 Surface potential setup employing a Kelvin probe.......................................... 11
1.2.3 Film balance setup with dipping well and sample lift..................................... 12
1.2.4 The Langmuir-Schaeffer deposition procedure............................................... 13
1.3 Fluorescence microscope setups...................................................................... 15
1.4.1 Supported mixed monolayer on a hydrophobic glass surface......................... 16
1.4.2 Fluorescence image of a transferred and processed monolayer....................... 17
1.4.3 Image processing procedure to obtain the radial distribution function........... 18
1.4.4 The potential of mean force and spring model................................................ 20
1.5.1 Diffraction geometries of the ID10B GIXD setup at the ESRF...................... 21
1.5.2 Bragg rods for various packing structures....................................................... 22

2.1 Space filling model of FL17............................................................................ 2

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents