//img.uscri.be/pth/d0303a9df015ef3f15fa1bd55e175936ca19bd41
YouScribe est heureux de vous offrir cette publication
Lire

Mathématiques 2004 Mesures Physiques IUT Orsay: Orsay

De
2 pages
Examen du Supérieur IUT Orsay: Orsay. Sujet de Mathématiques 2004. Retrouvez le corrigé Mathématiques 2004 sur Bankexam.fr.
Voir plus Voir moins
Mathématiques :DS n°1 IUT ORSAY.Semestre S1 Mesures Physiques(durée 2heures ) 04/10/2004  Tousdocuments interdits sauf les calculettes non-graphiques et non-programmables  ainsique les formulaires fournis… et repris en fin d’épreuve.
A.Trigonométrie A-I. Equationd’un type connu p p Rappeler la valeur decos( )et en déduire la valeur decos( ). 4 8 Résoudre l’équation suivante oùest un réel inconnu: 2#2 .cos(x)%2%2 .sin(x)13. A-II. Equationd’un autre type connu 2 Résoudre l’équation suivante oùest un réel inconnu :2.sin (x) 7.sin(x)#310
B.Complexes B-I. Moduleet argument j2 1#e Déterminer en fonction dele module detel quez1j. ja 2.e 3p Donner une valeur de l’argument desia1? 4 B-II. Résolutiond’équation « puissance » cdésigne le complexe2.(j#3). Déterminer le module et un argument dec3 Résoudre l’équationc%4où désigneun complexe inconnu. C.Limites, fonctions continues, fonctions dérivables C-I. Limites (1) Al’aide d’encadrements et du « théorème des gendarmes » montrer que : x x1 a)lim 0 b)lim 0x|0x|1 2%1#x2%1#x (2) Enutilisant les propriétés usuelles (sommes, produits, quotients et composées) et les limites connues, déterminer les limites suivantes: sin(5 ) 2 4# b)lima)limx|0 x|0tan(2 ) 3
C-II. Continuitéet dérivabilité 1 sin( ) x x.e six0 On donne une fonctiondeverstelle quef x. En utilisant les ( )10 six10 théorèmes usuels sur les limites, montrer queest continue en 0 et étudier sa dérivabilité en 0.
C-III. Dérivéesusuelles En admettant que ces dérivées existent, calculer'(x)lorsque : 2 a):ℝ ℝ etf(x1) sin(x).#1x2 b):| etf(x1) sin(#1x)sin( ) c)f:| etf(x1)2 1
D.Différentielle totale
D-I. Différentielleet estimation 2 On donnef(x)1. Estimer la variation de 1
(x)lorsque
varie de 3 à 3,08.
D-II. Différentielleet dérivée 1 Un point(x;y) mobilese déplace sur la courbe d’équationy1 tracéedans un 2 1 repère orthonormé où l’unité est le mètre. Le dessin (en réduction) fourni ci-dessous donne l’allure de la courbe. En passant par le point d’abscisse3, la vitesse du projeté orthogonal desur l’axe des abscisses est 3 [m/s] : quelle est alors la vitesse du projeté orthogonal desur l’axe des ordonnées ? 2 Comment peut-on interpréter le signe de cette vitesse ?
E.Questions de cours: trigonométrieréciproque 295p295p a) Quelleest la valeur exacte deArcsin(sin( ))puis deArcsin(cos( ))? 3 3 b) Peut-ondire que pour touton asin(Arcsin(Arcsin(sin( ))x))? Si oui, le démontrer et sinon, donner un contrexemple. c) Quelssont lesensembles de départ et d’arrivée de la fonctionArcsin()? Rappeler quelle est sa dérivée…et le redémontrer. Barème approximatif susceptible de modification… A1 A2 B1 B2 C1 C2 C3 D1 D2 ETotal 2 2 2 2 3,51,5 1,5 12 2,520