Cours sur les dérivées

icon

3

pages

icon

Français

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

3

pages

icon

Français

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée
Bac Pro indus Cours sur les dérivées 1/3 DÉRIVÉE D'UNE FONCTION I) Notion de tangente Considérons la parabole (P) d'équation y = ? 12 x ? et la droite (d) d'équation y = 32x? ? . On étudie l'intersection de la parabole avec la droite : on doit pour cela résoudre le système : ? 12 3- 2 xy y x ? = ????? = ??? On a : ? 312 2 x x? = ? ? soit : ? 12 2 x x+ + = 0 Ce qui donne x? + 2x + 1 = 0 puis (x + 1)? = 0. On a donc une racine double x = -1. La droite et la parabole ont un seul point commun. On dit que la droite (d) est tangente à la parabole (P) au point A(-1 ; - 2 1 ) Définition : Une parabole et une droite sont dites tangentes si elles ont en commun un point double, appelé point de contact. Nous admettrons qu'en tout point d'une parabole, il existe une droite tangente et une seule. 1 0 1 (P) (d)

  • droite tangente

  • parabole

  • tangente

  • x3 x6

  • équation de la tangente au point d'abscisse x0

  • coefficient directeur de la tangente

  • x? x6


Voir icon arrow

Publié par

Nombre de lectures

90

Langue

Français

Alternate Text