//img.uscri.be/pth/6e9fc583af38afc44d5783eb6cc202cc72802fff
Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Convection optimal transport coupled Monge Ampère systems and

De
54 pages
Convection, optimal transport, coupled Monge-Ampère systems and magnetic relaxation Yann Brenier CNRS Universite de Nice Convection, optimal transport, coupled Monge-Ampere systems and magnetic relaxation – p.1/21

  • navier-sokes boussinesq

  • equations

  • db model leading

  • coupled monge-ampère

  • systems including

  • relaxation

  • monge-ampere systems


Voir plus Voir moins
Convection, optimal transport, coupled Monge-Ampère systems and magnetic relaxation
Yann Brenier
brenier@math.unice.fr
CNRS
Universite´ de Nice
1.
Outline
Navier-Sokes Boussinesq equations, their Darcy/Stokes/Hydrostatic limits and the Angenent-Haker-Tannenbaum model in optimal transport theory
Outline
1.Navier-Sokes Boussinesq equations, their Darcy/Stokes/Hydrostatic limits and the Angenent-Haker-Tannenbaum model in optimal transport theory 2. A convexity principle for theHBionsquate
Outline
1.Navier-Sokes Boussinesq equations, their Darcy/Stokes/Hydrostatic limits and the Angenent-Haker-Tannenbaum model in optimal transport theory 2. A convexity principle for theHBetauqsnoi 3.Coupled Monge-Ampère systems including Hoskins' semi-geostrophic equations and a fully nonlinear chemotaxis model
Outline
1.Navier-Sokes Boussinesq equations, their Darcy/Stokes/Hydrostatic limits and the Angenent-Haker-Tannenbaum model in optimal transport theory 2. A convexity principle for theHBuqensatio 3.Coupled Monge-Ampère systems including Hoskins' semi-geostrophic equations and a fully nonlinear chemotaxis model 4. A stringy generalization of theDBmodel leading to a magnetic relaxation model à la Arnold-Moffatt