A modified Lagrange Galerkin method for a fluid rigid system
24 pages

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

A modified Lagrange Galerkin method for a fluid rigid system

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
24 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density Jorge San Martín ? , Jean-François Scheid † , Loredana Smaranda ‡ Abstract In this paper, we propose a new characteristics method for the discretization of the two dimensional fluid-rigid body problem in the case where the densities of the fluid and the solid are di?erent. The method is based on a global weak formulation involving only terms defined on the whole fluid-rigid domain. To take into account the material derivative, we construct a special characteristic function which maps the approximate rigid body at the discrete time level tk+1 into the approximate rigid body at time tk. Convergence results are proved for both semi-discrete and fully-discrete schemes. 1 Introduction The aim of this paper is to present a modified characteristics method for the discretization of the equations modelling the motion of a rigid solid immersed into a viscous incompressible fluid. Our method is a generalisation of the numerical scheme presented in San Martín, Scheid, Takahashi and Tucsnak [18] for the case where the fluid and the solid have di?erent densities. The fluid-rigid system occupies a bounded and regular domain O ? R2. The solid is assumed to be a ball of radius 1 whose center, at time t, is denoted by ?(t).

  • rigid body

  • discrete formulation

  • has given

  • stokes equations

  • lagrange-galerkin method

  • semi-discretization scheme

  • characteristic function

  • domain has

  • ?0 ?


Sujets

Informations

Publié par
Nombre de lectures 34

Extrait

y z
t tk+1 k
2OR
t; (t)
( t) =OnB((t)) t u(x;t) p(x;t)
(t) !(t)

@u
+ (ur)u u +rp = f; x2 ( t);t2 [0;T ];f f
@t
u = 0; x2 ( t);t2 [0;T ];
u = 0; x2@O;t2 [0;T ];
0 ?
u = (t) +!(t)(x (t)) ; x2@B((t));t2 [0;T ];
Z Z
00
m (t) = nd + f(x;t)dx;t2 [0;T ];s
@B((t)) B((t))
Z Z
0 ? ?J! (t) = (x (t)) nd + (x (t)) f(x;t)dx;t2 [0;T ]:s
@B((t)) B((t))
= pId + 2D(u) D(u) =
T T(ru+ru )=2 ru ru
m J

y
z
dedierenththeforumerical.vThe.uid[18]llsimmersedtheThepartabdmapsmethoandharacteristicsuidcScnewmethoadellingosepresenpropbeowber,atpapspatistimeuid-rigidthissolid.aseTheahashivtedelogeneralisationcitviscousyaeldofIndiedAbstractpapSmaranda1Loredanapro,uid-rigidheidapproandsystem,thelevpressurestressScrigidran?oisharacteristicJean-Fose,eMart?nySanwofdensities.thevuid,(1.4)thetcentheterTofTmassSanJorgehemeythedensitisuousuid.andtotrigidhemotionangularequationsvtheeloharacteristicscitayistinofdiscontrowithsemi-discretesystemedofresultsthe.ballatsatisfyrigidtheInfollovwingtoNadyvier-StokdiscreteeshsystemwithcoupledowithapproNewton'swhiclacws:theuid-rigidan.patfordynamicdthedomaiconstanuid-rigidsystemmethoTheLagrange-Galerkintdiededenotedhaarethemassandtheheomenwhereofcdiscretizationfortucsnakdeanderakaheid,FMart?n,deinF?sicaspresenMatem?ticas,scersidadnChileofCenadeddelamienOurMatem?tico,incompressibleMa2071inCasillasolidC(1.5)reoofSantheChile;moytheEliediscretizationUMRforNancy-Univmetho?,cINRIA,mo.tF-54506toandereuvre-l?s-NancythisFaimscheid@iecn.u-nancductionbInhemes.fully-discretesctandMothtforFvyareMathematicsergenceComputerConUnivdimensionalytimePite?ti,dyT?rgubVximatenr.(1.6)110040theRomania;oiseofthetimeinatoter,elcentimewhosedenotes1Caucradiusy(1.3)tensoroftheballdyabeximatebthetohedfunctionumandassecialismeanssolidtranspTheof.constructtheThetositivwconstanoedomaintheregularviscositandofoundeduidbtheatsccupiesandomothewandglobalmatAinertiaonDepartamenbasedosIngenii?dMatem?tica,methoacultadTheCienciast.ywholeUnivdierendeareandsolidtrotheMoandtouidUtheRofCNRS-UChile,densities170/3-theorwhere3,casetiago,thejorge@dim.uchile.clinInstitutproblemCartan.cl7502,diversittheCNRS,onB.Pdened239,termsVonlyoolvingCedex,vrance;iny.frulationDepartmenformofeakaaccounhematics,toacultinofeandtakScience,oersit(1.2)ofTStr.materialdinthealet1,ativPite?ti,derivsmaranda@dim.uchilee,1(1.1)
x2?x =
x1
x1 2x = 2R
x2
u(x; 0) =u (x); x2 (0) ;0
2 0 2(0) = 2R ; (0) = 2R ; !(0) =! 2R:00 1
f s
= :f s
=f s
= f s
d,(1.7)wconditions:ergenceinitialthmswithelemecompletedngis(1.1)(1.8)6)in(1.1)(1.inSystemin.thallbforwnotationsemi-discretizationheandtt,usetwillahashi(1.8)ofInandthisforpapumericaler,eswieandsuppInoseresultthatariablesthein-dedeformationnsdidimensionatStokydomaine[20].wmethoofethetheuidInandvtheondensitbygidarticle,csmaterialofdtheODUCTIONsolidorgaareeconstanorganizedt,thebuuitstnotconsistsequal,thethatsecondiulationswhithetinduces6hasThroughouted.ydyoroanalysisTheauid-structuretheinhasteracandtLegendreieonharacteristicsproblempro(1.1)(1.8)theiso-dicrigidharacterizedsbheid,y18],theedstrongumericalcouplingwithboetwithwtheeenofthebasednonlinearsequationsformofintheonsuiddandtothoseergenofsimthemstructure,dimensionalasheid,wTheeInllduceasetheefacttructurethatariabletheourequationsTheoremofvthe4uidtimearewwrittenorintheatvbariableadomainstructureinwheretime,thewhicevhuiddepeeendsvonytheanddisplacemen(tproblem).ofALEthensthetructure.equationsFdepromntheofngivumericaleenpMart?n,oinaktvofTview,hainbinedthisofkindaoftproblemstoitestimatesisformnecessaryttoproblemsolvofeoequationsvonousmoMart?n,vingakdomains.ucsnakFauthorsorprothisconreason,aindrecenelementxedytearsensionalvdyariousdensitiesauthorsuidhaequal,vreTheirprophemeosedaafunctionntumtheboferativofNadierenqtThetectrohniques,[18]someeasilyofcasewhicINTRhalgarefortheoflevielinsetandmetho(dMart?n,(seeakOsherucsnakanderSethianfollo[13]),nexttheincnotationtitiousspacesdomainorkmetho3de(see-Glteractionotimewinski,wPtan,tHesla,enJosephwhicandtheP?riauxof[7,heme.8]),dedicatedthdiscretizationespaceimmersedthebstateoundaryresultmethoidfor(seesimPofeskinhe[14])teractionandettheeenArbitraryuidLagrangianaEulerianin(ALE)casemtheethoofdstructure(seeanFolutionormaggiatheanddomainNobileb[4],nGastaldie[5],elopMauryb[11],GrandmonMauryGuimetandMadaGlo[9]winskione[12]).lInFthethesequel,methowtheeumericalbrieyofrecallunsteadysomeesrefereinntimecendenedomaiabwhenoutmotionthethenisumericalenconbvstudiedergenceSanforSmarandaNaTvier-ahashiStokMoreoeser,equations,andwheakn[10]thevdomaincomistheindepdendenctwithofnitetime.nTheap-Lagrange-GalerkinximationmethoderivderrorhasinbALEeenulationpropaosedwformensionalthedescribingnmotionumericalatreatmenbtdyofaconivcecuid.tion-dominatedSanequationsScandTitahashiisTbased[17,onthecomhabiningeavGalethervkinofnitenelemenmethotbasedproniteceduretswithaameshspaecialwdiscretisationdimofuid-rigidtheobproblemwheretheglobalofyedisconanduoussolidyi.e.theicthefunction..thisner,sceistrooncrucialstandarddicationsharacteristicthereharacteris-ulfunction,iwfrompropclassicalaulationnthescderiveeordertheprovier-Stokeesimilaruativ.resultmethoininWducethinkinthiscannotdicationetheextendedharacteristicourshould2e6to1conmatetherdensitiisaltinderivbativusingesamealongharacteristictraInjectories.papPironneauwinin[15]ducehasmogivonencaticdetaileanddeanalysisoseofnewtheumericalmethohemdinfortothevNaavier-Stokconesergenceequationsasand[18].S?lie[21]thathasmoproonvcedfunctionoptimalberrorusefulestimatesobtainforvthetLagrange-GalerkinormixedthmsnitetheelemenulationtaquaticappronximationsofsNatvier-StokoesthreeequationscasesinseaSanvScelToahashicitTy/pressur[19]).epapformisulation.asWws.ethealsosectionmenetiontrothesomewandorkfunctionalofwAwcon.hdouSectionandwGuermonddiscretiz[1],thewheredcsoninvproblemergenceinanalysisvofandaeniteaelemenetrspromainjegivction/Lagrange-Galerkininmetho3.3dhforintheconincompressibleergenceNathevier-StoksceSectionsisequationstoisfullydone.inTheandnvumericalandanalysisnofesomeourtimemaindecouplingalgs s sH (O) H (O) H (O)0
0;1s> 0 C (O) O
Zn o
2 2L (O) = f2L (O)j f dx = 0 :0
O
2 2L (O)
Z
2 2(u;v) = uv dx 8u;v2L (O) :
O
TA A 2 2 A;B2M22
TA :B A :B = Trace(A B) jAj
2L (O;M )22
Z
2
(A;B) = A :B dx 8A;B2L (O;M ):22
O
22O B() =fx2R :jx j 1g

1 2K() = u2H (O) j D(u) = 0 B() ;0
B() O

bK() = u2K()j u = 0 O ;

2M() = p2L (O)jp = 0 B() :0
K()
O
2u2K() l 2R ! 2Ru u
?u(y) =l +! (y ) 8y2B():u u

(
x2B();s
(x) =
x2OnB():f
u;v2K()
Z
(u;v) = uv dx +Ml l +J! ! :f u v u v
OnB()
u
0 ?u(x;t) = (t) +!(t)(x (t)) 8x2B((t));
bu(t)2K((t)) u
prohitzpiecewise(2.2)andtheWspace(2.6)ofshallrigidofunctionsisineconbtin,uoussfunctionsdevwithciateddivabewrgence)freeingintothe,whole2domainthen,ontransp,ytheulation.closureifofharacteristic.hemes.Wbedenitions,alsoodeneeTheprousualnotationyconbofdenoted)efact,divextendedbforwillductinnerbinthisproseedanucthe(2.3)solutionandfollothetspac5etoofpropthethepressureif2ourLipsclastofnoticespaceusingthevtanin,andare,ha,on,inspacesthe(2.1)inNOTtheIfenience,olevFiscorrespaconinspacesAspmatrix,problem.wthee(1.1)-(1.8)inyTIONergence(2.4)othRformemarkinner2.1and.eFspacesorer,coneveenience,theinFthe.remindeofrer,ofbthethepapwingdenoteconstanoffunctionwillSectioneisasotedosomee.crucialelertiesdnincbfunctionsyassoSobwithclassicalscwillThebteeextendedthat,byythezeroooutsideeoffor,y.thatAwccordingsectionstofoLemmae1.1vofcused[22,thepp.18],ofsforductaninneryforAND(2.1FUNCTIONALasSPsameAuseCEwSv,ortherenorm.existond-3thegivtheenyinTheTheorem(2.2)(2.3andare4.1ecicwhicourhInconcernsifsucsolutionhoftishatbananderrorvestimateresultsinbfunctionssemi-discretegidfully-discreteriulations.ofprospacetheirtheNotationduceytrodenoteinwefunctionalwThroughout,papforwthewfully-discreeasilyorthatFmatricestuseey(2.5)orInose.addition,itswInereminderdenethithepapdensittheyformer,(1.1)(1.8)anbyextendedvabelovcity2e : [0;T ] O!O
8
d< e e (t;s;x) =u( (t;s;x);t) 8t2 [0;T ];
dt
: e (s;s;x) =x:
D u = @u=@t + (ur)u u tt 0
h i
d eD u(x;t ) = u( (t;t ;x);t) :t 0 0
dt jt=t0
2 2 1 b2H (0;T ) ; !2H (0;T ); u2C([0;T ];K((t)));
detJ = 1;e
!
e@ i
J =e @yj
i;j
ey7! (y)

2 2 2 1 2 2 1 2u2L 0;T ;H ( ( t)) \H 0;T ;L ( ( t)) \C [0;T ];H ( ( t)) ;
2 1 2 2 1p2L 0;T ;H ( ( t)) ; 2H (0;T ) ; !2H (0;T )
u
0 ?
u(x;t) = (t) +!(t)(x (t)) 8x2B((t)):
(u;p;;!) t2 [0;T ];u(;t)2K((t))
p(;t)2M((t)) (u;p)
h i
d e u (t);’ +a(u;’) +b(’;p) = (f(t);’) 8’2K((t));
dt
b(u;q) = 0 8q2M((t));
Z
1 2a(u;v) = 2 D(u) : D(v) dx 8u;v2H (O)
O
Z
1 2 2b(u;p) = div(u)p dx 8u2H (O) ; 8p2L (O):0
O
ofwheren(2.9)hfunctionsforwhose2.3.leveelblines(2.10)ThenAnarethetheulationthatInemethov,haMoreeAwtegralthewherondecthathen(2.13)(1.1)(1.8)ewthelemmaoftLemmamatrixsinceuseis15],iANDtoFUNCTIONALproyoflosatises:vvesethendenotedortanbthatytime.haracteristicwithctothebyhittheinstankat(2.12)ofeefolloativtderivthmaterialthethethethatwwngivell-kno[21])w[byTIONdinstanceextende(see,ispreciselyiseld.thatcitandSPIte(2.7)CEproblemtheandSaluecurvvininitial4heimp(2.8)(2.11)satiseseRAssumeemarkLemma2.2to.respByproblemusingdiscretizeausedclassicaleresultwillofcLiouvillew(see,systemfofoformreainstance,a[2,andpp.251]),givifwtwingofthewsolution.theingredienasofnedeetransformation2ofNOTjacobiandumericalisdfunctioneAiseharacteristicencthengWforskipcproNaofes2.3(see,itinstance,sCh.12]).milariftheforofallcorrespisitheresultsolutiontheoflassical(1.1)vier-Stok-system(1.8)forif[16,andonlyN 2 N t = T=N t = kt k = 0; ;Nk
k kk 0 2b(u ; )2K( )\C (O) O
t =tk
e eX(x) = (t ;t ;x)

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents