Algebraic Geometric Topology paper no Preprint version available at http: www fourier ujf grenoble fr eiserm
26 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Algebraic Geometric Topology paper no Preprint version available at http: www fourier ujf grenoble fr eiserm

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
26 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Algebraic & Geometric Topology 5 (2005), paper no. 23, 537-562. Preprint version available at eiserm Yang-Baxter deformations of quandles and racks MICHAEL EISERMANN Given a rack Q and a ring A , one can construct a Yang-Baxter operator cQ : V ? V ? V ? V on the free A-module V = AQ by setting cQ(x? y) = y? xy for all x, y ? Q . In answer to a question initiated by D.N. Yetter and P.J. Freyd, this article classifies formal deformations of cQ in the space of Yang-Baxter operators. For the trivial rack, where xy = x for all x, y , one has, of course, the classical setting of r-matrices and quantum groups. In the general case we introduce and calculate the cohomology theory that classifies infinitesimal deformations of cQ . In many cases this allows us to conclude that cQ is rigid. In the remaining cases, where infinitesimal deformations are possible, we show that higher-order obstructions are the same as in the quantum case. Introduction Following M. Gerstenhaber [16], an algebraic deformation theory should • define the class of objects within which deformation takes place, • identify infinitesimal deformations as elements of a suitable cohomology, • identify the obstructions to integration of an infinitesimal deformation, • give criteria for rigidity, and possibly determine the rigid objects.

  • braid ?i

  • called

  • concise solution

  • quantum group

  • map c˜

  • yang

  • satisfies c˜ ?

  • solution c1

  • operator cq


Sujets

Informations

Publié par
Nombre de lectures 48
Langue English

Extrait

Algebraic&GeometricTopology5(2005),paperno.23,537-562.
Preprintversionavailableathttp://www-fourier.ujf-grenoble.fr/

eiserm

Yang-Baxterdeformations
ofquandlesandracks
M
ICHAEL
E
ISERMANN

Givenarack
Q
andaring
A
,onecanconstructaYang-Baxteroperator
c
Q
:
V

V

V

V
onthefree
A
-module
V
=
A
Q
bysetting
c
Q
(
x

y
)
=
y

x
y
forall
x
,
y

Q
.InanswertoaquestioninitiatedbyD.N.YetterandP.J.Freyd,thisarticle
classiesformaldeformationsof
c
Q
inthespaceofYang-Baxteroperators.For
thetrivialrack,where
x
y
=
x
forall
x
,
y
,onehas,ofcourse,theclassicalsetting
ofr-matricesandquantumgroups.Inthegeneralcaseweintroduceandcalculate
thecohomologytheorythatclassiesinnitesimaldeformtaionsof
c
Q
.Inmany
casesthisallowsustoconcludethat
c
Q
isrigid.Intheremainingcases,where
innitesimaldeformationsarepossible,weshowthathigher-orderobstructions
arethesameasinthequantumcase.

Introduction

FollowingM.Gerstenhaber[
16
],analgebraicdeformationtheoryshould

denetheclassofobjectswithinwhichdeformationtakesplace,

identifyinnitesimaldeformationsaselementsofasuitablecohomology,

identifytheobstructionstointegrationofaninnitesimaldeformation,

givecriteriaforrigidity,andpossiblydeterminetherigidobjects.
InanswertoaquestioninitiatedbyP.J.FreydandD.N.Yetter[
15
],wecarryoutthis
programmeforracks(linearizedoversomering
A
)andtheirformaldeformationsin
thespaceof
A
-linearYang-Baxteroperators.

2
MichaelEisermann
Arackisaset
Q
withabinaryoperation,denoted(
x
,
y
)
7→
x
y
,suchthat
c
Q
:
x

y
7→
y

x
y
denesaYang-Baxteroperatoronthefree
A
-module
A
Q
(see
§
1
fordenitions).
Foratrivialrack,where
x
y
=
x
forall
x
,
y

Q
,weseethat
c
Q
issimplythe
transpositionoperator.Inthiscasethetheoryofquantumgroups[
7
,
27
,
22
,
23
]
producesaplethoraofinterestingdeformations,whichhavereceivedmuchattention
overthelast20years.Itthusseemsnaturaltostudydeformationsof
c
Q
inthegeneral
case,where
Q
isanon-trivialrack.

Outlineofresults
Werstintroduceandcalculatethecohomologytheorythatclassiesinnitesimal
deformationsofracksinthespaceofYang-Baxteroperators.Inmanycasesthis
sufcestodeducerigidity.Intheremainingcases,whereinnitesimaldeformations
arepossible,weshowthathigher-orderobstructionsdonotdependon
Q
:theyarethe
sameasintheclassicalcaseofquantuminvariants.(See
§
1.4
foraprecisestatement.)
FormalYang-Baxterdeformationsofracksthushaveanunexpectedlysimpledescrip-
tion:uptoequivalencetheyarejustr-matriceswithaspecialsymmetryimposedby
theinnerautomorphismgroupoftherack.Althoughthisisintuitivelyplausible,it
requiresacarefulanalysistoarriveatanaccurateformulation.Theprecisenotionof
entropic
r-matriceswillbedenedin
§
1.3
.
Withregardstotopologicalapplications,thisresultmaycomeasadisappointment
inthequestfornewknotinvariants.Toourconsolation,weobtainacompleteand
concisesolutiontothedeformationproblemforracks,whichisquitesatisfactoryfrom
analgebraicpointofview.
Throughoutourcalculationsweconsiderthegenericcasewheretheorder
|
Inn(
Q
)
|
of
theinnerautomorphismgroupoftherack
Q
isinvertibleinthegroundring
A
.We
shouldpointout,however,thatcertainknotinvariantsariseonlyinthemodularcase,
where
|
Inn(
Q
)
|
vanishesin
A
;seetheclosingremarksinSection
6
.

Howthispaperisorganized
Inordertostatetheresultsprecisely,andtomakethisarticleself-contained,Section
1
rstrecallsthenotionsofYang-Baxteroperators(
§
1.1
)andracks(
§
1.2
).Wecan
thenintroduceentropicmaps(
§
1.3
)andstateourresults(
§
1.4
).Wealsodiscusssome
examples(
§
1.5
)andputourresultsintoperspectivebybrieyreviewingrelatedwork
(
§
1.6
).

Yang-Baxterdeformationsofquandlesandracks
3
Theproofsaregiveninthenextfoursections:Section
2
introducesYang-Baxtercoho-
mologyandexplainshowitclassiesinnitesimaldeformaitons.Section
3
calculates
thiscohomologyforracks.Section
4
generalizesourclassicationfrominnitesimal
tocompletedeformations.Section
5
examineshigher-orderobstructionsandshows
thattheyarethesameasintheclassicalcaseofquantuminvariants.Section
6
,nally,
discussessomeopenquestions.

1Reviewofbasicnotionsandstatementofresults
1.1Yang-Baxteroperators
Let
A
beacommutativeringwithunit.Inthesequelallmoduleswillbe
A
-modules,
andalltensorproductswillbeformedover
A
.Forevery
A
-module
V
wedenoteby
V

n
the
n
-foldtensorproductof
V
withitself.Theidentitymapof
V
isdenotedby
I:
V

V
,and
I
=
I

Istandsfortheidentitymapof
V

V
.
Denition1
A
Yang-Baxteroperator
on
V
isanautomorphism
c
:
V

V

V

V
thatsatisesthe
Yang-Baxterequation
,alsocalled
braidrelation
,
(
c

I)(I

c
)(
c

I)
=
(I

c
)(
c

I)(I

c
)inAut
A
(
V

3
)
.
Thisequationrstappearedintheoreticalphysics,inapaperbyC.N.Yang[
28
]onthe
many-bodyprobleminonedimension,inworkofR.J.Baxter[
2
,
3
]onexactlysolvable
modelsinstatisticalmechanics,andlaterinquantumeldtheory[
13
]inconnection
withthequantuminversescatteringmethod.Italsohasaverynaturalinterpretationin
termsofArtin'sbraidgroups[
1
,
4
]andtheirtensorrepresentations:
Remark2
Recallthatthebraidgroupon
n
strandscanbepresentedas
σ
i
σ
j
=
σ
j
σ
i
for
|
i

j
|≥
2
B
n
=
σ
1
,...,σ
n

1

σ
i
σ
j
σ
i
=
σ
j
σ
i
σ
j
for
|
i

j
|
=
1
,
wherethebraid
σ
i
performsapositivehalf-twistofthestrands
i
and
i
+
1.Ingraphical
notation,braidscanconvenientlyberepresentedasinFigure
1
.
GivenaYang-Baxteroperator
c
,wecandeneautomorphisms
c
i
:
V

n

V

n
for
i
=
1
,...,
n

1bysetting
c
i
=
I

(
i

1)

c

I

(
n

i

1)
.TheArtinpresentationensures
thatthereexistsauniquebraidgrouprepresentation
ρ
cn
:B
n

Aut
A
(
V

n
)denedby
ρ
cn
(
σ
i
)
=
c
i
.

4
MichaelEisermann
Hereweadoptthefollowingconvention:braidgroupswillactontheleft,sothat
compositionofbraidscorrespondstocompositionofmaps.ThebraidinFigure
1
,forexample,reads
β
=
σ
1

2
σ
22
σ
1

1
σ
21
σ
1

1
σ
21
;itisrepresentedbytheoperator
ρ
c
3
(
β
)
=
c
1

2
c
22
c
1

1
c
21
c
1

1
c
21
actingon
V

3
.
11iii+1i+1
nnFigure1:Elementarybraids
σ
i
+
1
,
σ
i

1
;amorecomplexexample
β
NoticethatArtin,afterhavingintroducedhisbraidgroups,couldhavewrittendown
theYang-Baxterequationinthe1920s,butwithoutanynon-trivialexamplesthetheory
wouldhaveremainedvoid.ItisaremarkablefactthattheYang-Baxterequationadmits
anyinterestingsolutionsatall.Manyofthemhaveonlybeendiscoveredsincethe
1980s,andourrstexamplerecallsthemostprominentone:
Example3
Forevery
A
-module
V
thetransposition
τ
:
V

V

V

V
givenby
τ
(
a

b
)
=
b

a
isaYang-Baxteroperator.Thisinitselfisnotverysurprising,but
deformationsof
τ
canbeveryinteresting:Supposethat
V
isfreeofrank2andchoose
abasis(
v
,
w
).Ifweequip
V

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents