Entire curves and algebraic differential equations
68 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Entire curves and algebraic differential equations

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
68 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Entire curves and algebraic differential equations Jean-Pierre Demailly Institut Fourier, Universite de Grenoble I, France April 16 2009, Saint-Martin d'Heres IF - IMPA Conference Jean-Pierre Demailly (Grenoble I), 16/04/2009 Entire curves and algebraic differential equations / IF - IMPA

  • constant holomorphic map

  • simply connected

  • open subset

  • has no

  • dimensional manifold

  • liouville's theorem

  • entire curves


Sujets

Informations

Publié par
Nombre de lectures 29
Langue English
Poids de l'ouvrage 1 Mo

Exrait

JaenP-irereDmeiallyG(reEntirecurvesand

algebraicdifferentialequations

nboleJean-PierreDemailly

InstitutFourier,Universite´deGrenobleI,France

April162009,Saint-Martind’He`res
IF-IMPAConference

)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JeEntirecurves

naP-irereDmeDefinition.
Byan
entirecurve
wemeananonconstant
holomorphicmap
f
:
C

X
intoacomplex
n
-dimensionalmanifold.

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JeEna-niPretreirDeemcruvesDefinition.
Byan
entirecurve
wemeananonconstant
holomorphicmap
f
:
C

X
intoacomplex
n
-dimensionalmanifold.
If
X
isa
bounded
opensubsetΩ

C
n
,thenthereareno
entirecurves
f
:
C

Ω(
Liouville’stheorem
)

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JeEna-niPretreirDeemcruvesDefinition.
Byan
entirecurve
wemeananonconstant
holomorphicmap
f
:
C

X
intoacomplex
n
-dimensionalmanifold.
If
X
isa
bounded
opensubsetΩ

C
n
,thenthereareno
entirecurves
f
:
C

Ω(
Liouville’stheorem
)
X
=
Cr
{
0
,
1
,
∞}
=
Cr
{
0
,
1
}
hasnoentirecurves
(
Picard’stheorem
)

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JeEna-niPretreirDeemcruvesDefinition.
Byan
entirecurve
wemeananonconstant
holomorphicmap
f
:
C

X
intoacomplex
n
-dimensionalmanifold.
If
X
isa
bounded
opensubsetΩ

C
n
,thenthereareno
entirecurves
f
:
C

Ω(
Liouville’stheorem
)

X
=
Cr
{
0
,
1
,
∞}
=
Cr
{
0
,
1
}
hasnoentirecurves
(
Picard’stheorem
)
Acomplextorus
X
=
C
n
/
Λ(Λlattice)hasalotofentire
curves.As
C
simplyconnected,every
f
:
C

X
=
C
n
/
Λ
liftsas
f
˜:
C

C
n
,

f
˜(
t
)=(
f
˜
1
(
t
)
,...,
f
˜
n
(
t
))

and
f
˜
j
:
C

C
canbearbitraryentirefunctions.

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JePnaP-rieorrejeDecmtivealegrbaicvraietiesConsidernowthecomplexprojective
n
-space
P
n
=
P
n
C
=(
C
n
+1
r
{
0
}
)
/
C

,
[
z
]=[
z
0
:
z
1
:
...
:
z
n
]
.

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JePnaP-rieorrejeDecmtivealegrbaicvraietiesConsidernowthecomplexprojective
n
-space

P
n
=
P
n
C
=(
C
n
+1
r
{
0
}
)
/
C

,
[
z
]=[
z
0
:
z
1
:
...
:
z
n
]
.

Anentirecurve
f
:
C

P
n
isgivenbyamap

t
7−→
[
f
0
(
t
):
f
1
(
t
):
...
:
f
n
(
t
)]

where
f
j
:
C

C
areholomorphicfunctionswithout
commonzeroes(sotherearealotofthem).

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JePnaP-rieorrejeDecmtivealegrbaicvraietiesConsidernowthecomplexprojective
n
-space

P
n
=
P
n
C
=(
C
n
+1
r
{
0
}
)
/
C

,
[
z
]=[
z
0
:
z
1
:
...
:
z
n
]
.

Anentirecurve
f
:
C

P
n
isgivenbyamap

t
7−→
[
f
0
(
t
):
f
1
(
t
):
...
:
f
n
(
t
)]

where
f
j
:
C

C
areholomorphicfunctionswithout
commonzeroes(sotherearealotofthem).

Moregenerally,lookata(complex)
projectivemanifold
,
.e.i

X
n

P
N
,
X
=
{
[
z
];
P
1
(
z
)=
...
=
P
k
(
z
)=0
}

where
P
j
(
z
)=
P
j
(
z
0
,
z
1
,...,
z
N
)arehomogeneous
polynomials(ofsomedegree
d
j
),suchthat
X
is
nonsingular
.

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JeKobayashimetric/hyperbolicmanifolds

naP-irereDmeForacomplexmanifold,
n
=dim
C
X
,onedefines
the
Kobayashipseudo-metric
:
x

X
,
ξ

T
X

κ
x
(
ξ
)=inf
{
λ>
0;

f
:
D

X
,
f
(0)=
x

f

(0)=
ξ
}

On
C
n
,
P
n
orcomplextori
X
=
C
n
/
Λ,onehas
κ
X

0
.

nO

iallyG(rneo,

ble)I,1otxelpmocroir

/6402/009Ent=

ireucrvsesaheno,Λ/

nadlaegrbiacdiffreneitlaqeutainos/FI-MIAP
JeKobayashimetric/hyperbolicmanifolds

naP-irereDmeForacomplexmanifold,
n
=dim
C
X
,onedefines
the
Kobayashipseudo-metric
:
x

X
,
ξ

T
X

κ
x
(
ξ
)=inf
{
λ>
0;

f
:
D

X
,
f
(0)=
x

f

(0)=
ξ
}

On
C
n
,
P
n
orcomplextori
X
=
C
n
/
Λ,onehas
κ
X

0
.
X
issaidtobe
hyperbolic(inthesenseofKobayashi)
if
theassociatedintegratedpseudo-distanceisadistance
(i.e.itseparatespoints–Hausdorfftopology),

iallyG(rnebole)I,610//40290Enitreucrvsenadlaegrbiacdiffreneitlaqeutainos/FI-MIAP

  • Accueil Accueil
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • BD BD
  • Documents Documents