Recent progress in the study of hyperbolic algebraic varieties
65 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Recent progress in the study of hyperbolic algebraic varieties

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
65 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Recent progress in the study of hyperbolic algebraic varieties Jean-Pierre Demailly Institut Fourier, Universite de Grenoble I, France December 18, 2009 / Colloquium CAS, Beijing Jean-Pierre Demailly (Grenoble I), Beijing, 18/12/2009 Recent progress in the study of hyperbolic algebraic varieties

  • constant holomorphic map

  • simply connected

  • algebraic varieties

  • has no

  • dimensional manifold

  • liouville's theorem

  • entire curves


Sujets

Informations

Publié par
Nombre de lectures 20
Langue English
Poids de l'ouvrage 1 Mo

Exrait

Jeaniame(ylleiP-Derr,BI)jieienGrleobR9ce2/00/821gn1,ntheessirogrentpilobrepyhfoydutsetrivaicraeblgcasie
December 18, 2009 / Colloquium CAS, Beijing
Jean-Pierre Demailly
Recent progress in the study of hyperbolic algebraic varieties
InstitutFourier,Universite´deGrenobleI,France
tnEirecurveslyilre(GreermaDeaeJiP-n09Recent18/12/20eBjini,gonlbIe,)alicolrbpehyofdyutsehtnissergorp
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold.
itseraeiiavcegrb
veurecirsEtn(yllnerGDerriamejiei,1ngleob,BI)Jean-Pieciavbeareisirteyperyofhcalgboliissergordutsehtn00/2128/tpenec9R
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem)
ectn90eRerssrpgoestuinthhypedyoflacilobrvciarbegestiiear
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville’s theorem) X=C r{01∞}=C r{01}has no entire curves (Picard’s theorem)
Jean-PierreDemayllierG(lbon,)IeijBeg,in/118202/sruevriceEtn
tiEncurevrseyhepbrloseutydforessinthcentprog02/2eR90,gni1/81),eIijBere(GblnoliyleDamreer-niPJea
˜ ˜ ˜ f(t) = (f1(t)    fn(t))
˜ andfj:CCcan be arbitrary entire functions.
Definition.By anentire curvewe mean a non constant holomorphic mapf:CXinto a complex n-dimensional manifold. IfXis aboundedopen subset ΩCn, then there are no entire curvesf:CΩ (Liouville s theorem) X=C r{01∞}=C r{01}has no entire curves (Picard’s theorem) A complex torusX=Cnlattice) has a lot of entireΛ (Λ curves. AsCsimply connected, everyf:CX=CnΛ ˜ lifts asf:CCn,
estirbeglacieiravcia
tiiearcvaibrgealevitcejorPrgorisseceR9ptnefhyoeryphentudstbearciavobilacgl
Consider now the complex projectiven-space
Pn=PnC= (Cn+1r{0})C
r{0})C
C= (C
[z] = [z0:z1:  :zn]
[z] = [z0:z1:  :zn]
rietieseseiP-naeJiameDerrGrenlly(I),Boblegn1,ieij2/00/821
  • Accueil Accueil
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • BD BD
  • Documents Documents