ENTROPY OF SEMICLASSICAL MEASURES
23 pages

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

ENTROPY OF SEMICLASSICAL MEASURES

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
23 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

ENTROPY OF SEMICLASSICAL MEASURES FOR NONPOSITIVELY CURVED SURFACES GABRIEL RIVIÈRE Abstract. We study the asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface of nonpositive sectional curvature. To do this, we look at se- quences of distributions associated to them and we study the entropic properties of their accumu- lation points, the so-called semiclassical measures. Precisely, we show that the Kolmogorov-Sinai entropy of a semiclassical measure µ for the geodesic flow gt is bounded from below by half of the Ruelle upper bound, i.e. hKS(µ, g) ≥ 1 2 ∫ S?M ?+(?)dµ(?), where ?+(?) is the upper Lyapunov exponent at point ?. The main strategy is the same as in [17] except that we have to deal with weakly chaotic behavior. 1. Introduction Let M be a compact, connected, C∞ riemannian manifold. For all x ? M , T ?xM is endowed with a norm ?.?x given by the metric over M . The geodesic flow gt over T ?M is defined as the Hamiltonian flow corresponding to H(x, ?) := ??? 2 x 2 . This quantity corresponds to the classical kinetic energy in the case of the absence of potential.

  • also ask

  • quantum unique

  • geodesic flow

  • points need

  • flow gt over

  • semiclassical measure

  • measure cannot

  • liouville measure


Sujets

Informations

Publié par
Nombre de lectures 25

Extrait

t g
Z
1 +h ( ;g ) ()d ();KS
2 S M
+ ()
1 M C x2 M T Mx
t k:k M g T Mx
2kkxH(x;) := 2
2~ H 2
~
2L (M) ~
0
Z
1 8a2C (T M); (a) = a(x;)d (x;) :=h ; (a) i 2 ;~ ~ ~ ~ L (M)o ~
T M
(a) ~ a ~~
2~ = :~ ~
~! 0 ~
2 t S M :=fkk = 1g g S Mx
S M
( ) S M~ ~!0
Ananoinwhictyshob.measureTheamainwstraUniquetegyshoisthethofeprobabilitsamemeasureasertint[17]onlyexceptofthatmeasurewLeohaasvaeknotowheredtheealnegativwhithLiouvillewtheeaklybci.e.haoticmanifoldsbtropehaevior.Sinai1.thatIntraoductiononlyLettewb[4,egeoa)compact,isconnected,Moreowsemiclassical,thariemannianenmanifold.vFworFallthePreciselydesicmeasures.ertiessemiclassicaldicit,aso-calledthatthevts,thisoinerisdicitendoLiouvillewnotedcurvwithKaenormonp.lationtheu-ofaccume.givortenrestrbi.e.ycthegemetriclimitoNonnenmacvquanerontheirw.fact,Thewithgeow,desicature.osucwofofisertiessicaloer,vthaterispropmeasuretropicthenolmogoroisydenedisastthedesicHamiltoniansemiclassicalothewmanifoldscorrespcurvondingdesictogthestrongstudyoticevw,andofthemandtoitciatedshoassoaldistributionsonenofLyquencesnge.wThistoquanQuantitgyConjecturecorrespwhetherondsistomeasuretheleastclassicalnegativkineticInenergyusedinv-Sinaithetocaseopoficlassicaltheofabsenceatureofparticular,pedotenolmogorotial.tropAsyanpyresultobservheable,athisbquanctedtitgeoyofcancbentreclosequandesicstizedenerviaInpseudoorks,dierenandtialh,calculuseandbtheenquansemiclassicaltumgivop1eratorresultcooutrosorespondinginstancetoese-theisofathoksequencelodistributionewwherecalledwsemiclas-ismeasure.propvortionalonetowstheaPlancmeasurekaconstanytonatnedKthis,v-SinaiistroptheofLaplacehBeltramiinoparianeunderrgeoaotaoronactingforon.dooroofTeature.ature,curvgeo.oOuronmaineoconcernsatisesincthisaapropr(Anosotipropcleywillergobyethetomeasure)uppaspconsequence,24,canThiseiswnwnalmostthelatsequencesconexpergeapunotheermeasuretumvdicittopropLiouvilleyonAcstudy[21,the7].asymptoticphenomenonbknoehaasvior,quanasergosectionalytendsertto.emain,halleofconcerningtresultheouldfolloewinganswsequencetheoftumdistrEriobuyti[18],onsdetermine:theositivmeasurenonptheofsemiclassicalsurfaceornian(atRiemanforcompactofaeofature).case[2],thetharamanntheiolmogoroLaplacianentheyofderivnctionspruertiesfsemeigenmeasuresofmanifoldsisnegativertiescurvop1prInasymptoticshethewstudythateKWv-ct.enAbstrayRIVI?REanGABRIELsemiclassicalSisCEositivAThisSURFimpliesOptVEDsuppCURofYsemiclassicalELcannotVeNONPOSITIiORtoFclosedMEASURESdesic,SEMICLASSICALeigenfunctionsOFtheOPYaplacianENTRannotwhereoncOpatebonoundeddfromobinishighagyelo.-pseudosubsequendierenwtialwithophereratorKofcsymmorebtitativollower[8]oundsandthei.e.tropound,ofsatisesmeasuresbereerenupp3].RuelleIntheherofwhalfabymanifoldsbAnAnvaccumdesiculationopforoinmanifoldstnegativ(ascurvw1ot t(g ) (g ) t t


Z X
+h ( ;g ) ()d ()KS j
S M j

+ t (S M;g ;)j

Z d 1X (d 1)max+
h ( ;g ) ()d () :KS j 2S M j=1
1 t := lim log sup jd gjmax t! 1 2S Mt
+j
d 1
2
max

Z d 1X1 +
h ( ;g ) ()d ():KS j2 S M j=1
1M C

Z
1 +h ( ;g ) ()d ();KS
2 S M
+h ( ;g ) ()KS

1
U
theqsualeditourysuppifeigenfunctionsandanonlydifKolmoorquasimoismeasuretheouldLiouvillesurfmeasureertiesinytheandcasetoofLyapunovanunstableAnosotumvsoywbut[15].ationInofththiseRegardingpreviousatureinequaliteye,nonpthemeFiw.standardotropdenotedInthecalpinequalitositiv[ekLycapunoofvvexpyonenotsyofWthisistotheectInrespthenwithenofnegativyandcomplexitnonpthebsul[6].folloRegardingLtheseact,propriemannianerties,titheemain(2)resulttofthat,Ananoftharaman,RecallKopyoiscphshoandyNonnenmeacehercoherenwyasthetocitshoandwgeneralizedthat,sequencesfortrateaensemiclassical)measurereononholdsanSoAtlynonoqstoevonmanifold,whetheronedichaswtcurvestimagenthatlarger,knomeasuretheretvariansurfacesvcurv-inproanicetosurfacesandew11],oclearaetocaniatedincwassoTheoremerebcumonnentheeegativseecurvaturnonnw:asemiclassicise.Itdesicdenitions).Landvdetailsanore[19]wheresystemsmeforthatBisendixov-Sinaiappdorlarge[23]upp(seeonentymeasuretropthisenthatmetric)ofcalledass(alsocannotv-Sinaitomogorodesics.olthatKisthewithoutconstructedab.ishetheofmaximalErgoexpansionforrateofofprotheforgeoydesicconstructoquasimowcandatthesurfacefactsthefewergoathat'sinareentheOurpenositivsemiclassicalesequencesLytheapunotvareexprenoneninequalittsen[6].generalizedCompareddes)withetheDonnelly'soriginalcanresultlastfromthe[2],manifold:thisknoineLiouvilleqisualinottdesicyagivositiveresifanofexplicceitiouvillelobwresulterisbanounddenseonrthesubsetenoftropeyature).ofouraofsemicthelassicalpropmeasure.ofFoforositivinstance,curvfor[20,manifoldsitoecamefthatcronstantsnegativtebcurvadaptedature,thethiswingloaw:er1.1.betoundbcanabompecrctee,written(1)assurfacrecallofusositiveLetc.onalHoewletevber,aitalcanasurtuThen,rnooutgeothatundery.measuretroparianisnayvforeryassertslRuelleargeduequandynamicaltitwherytheoremandainalsothis.case,thethegorpreviousentrloanwyerenbhasoundthecanerbexpeatnegativointe.(whicparticular,hresultwwsouldtheimplyortthatanitsemiclisianmeasureemptbyreducedresult).closedComgeobiningWtheseunderlinetourwyoalsoobservtatitheonsdes[4],btheDonnellyyInw9],ereconsideredleadquestiontoQuanformUniqueulateditheyconjecturepacthat,etsfeigenfunctionsohervanthatythissemiclassicalquestion,measureouenan,exceptionaloneofhasdev-Sinaithateoncenwithonexample,partsathemeasure(evcaifrLiouvilleolmogoroisriedicKanddhabeyparticula1.1.zeroRIVI?REtropG..atheoremclosedthegeotrop2ofdesicmeasureswillforhaofvofeLaplacian.enthetropwysituationszeroslighTheydieatlsoouraskyedtheabtropout(ifthetoextensionuasimoofwthisbconjectureconsistentowithmanifoldsconstruction.withoutecmakonjaugaobservtoneassumptionsptheoinittsnot[4].wnIntheamearecenurewhilergooforositivforLiouvillegeosucothatonwsurfaceerenonpableetoatupro.vfact,ethethatustheirthecoanjisethancture,holdstheforestanwnyinsurfacedirectionwiththatanexistsAnosoopvandgeoindesicaoiwt(forinstancetpweorkmeasure[17],hweL gjU jU
uU ()
t (g )t
S M
Z T1+ u s ; () = lim U (g )ds;
T!+1T 0
+ ()
Z
uh ( ;g ) U ()d ():KS
S M
Z
1 uh ( ;g ) U ()d ():KS
2 S M
uU ()
thebilliwardsthe.[17]Ourfoliationspurptheoseallinlothisitarticle.isltoatprotionveethetheoremconstruction1.1.eOuroinstrategymainwillprecisebs.erthewillswillathmecrucialasolmogoroinme[17]for(and(3)alsoe[this4])losoerywhere).itextendisoprobablyofbtinesectiontositivtetorpro(andveasier)lforprotheneereaderthetoofharesultveestrategya,go[4]ocdadvisorunderstandingandofurfacetheoutmethofordsoundfromhathesettvwisoinreferencesbwhnotecouldreethesurfacesgeomethesetrainicecpsituationisisthesimpler.theWwilleonwillandfowcusproonthethe4]mainvdierencewhatsinandwreferethelemmasreadehretost[section17,preci4]Then,forhothebdetailssurfacesofuresevfolloeraltolemmas.quanTheendix,crucialquanobsabetroprvIationncerelyisforthatueastoinelythealsoAnosopv2case,[11surfacesls.ofononperositievterestingeouldcurv[14],aturemainhatagevformehacinontinuousofstableeandisunstableerywherefmostoliationsemark.andasknoouldcossibleonjugateresultpconjugateoInintsal.vTheseandproptertiesertieswnoerets).atultthetheheartyofe,theOrganizationproicle.ofswine[4,ey3,of17]curvandghwropewillwillevwerirewritingfofyfromthatoevbenlongifsimilartheaspropadyertieseofwthesewillstable/unstabletodirectionsforareofwweakpreciselyeroinfortosurfacesdieofdierennonpgesost.iwtivweecurvproature,sectiontheywillarethesucien[4]tadaptedtosettinganswnonpearInthewquestiontheofinAnanetharaman-Nonnenmaconherpressures.inthethisewresultseaklypressurecsomehaoticthesSinaie.twledgementiouldng.sInm[4Anan,tro-3,this17],tiothereencouragingwtheasnonpaeddynamical.quanhetityydiscussionswhicsubheweras20cruciallydetaused:astrhefunstablebJacobianwofathevgeotodesicinobw.wInithefromcaseTheofadasurfacesanofofnonpnewositivulationetcurvtature,functionothentegralethecanwinrtrooundducedenedanvanalogue(andofalit.evThisRquanOnetitalsoywhethercomeswfrombthepsttoudythisoftoJacwithoutobipeldsts.andfact,issurfacescalledsthehaunstableeRiccatistablesolutionunstableorwiFhergopropdic[20](andnotcourseanconjugate[5]oinatThepdict,yethatnotconanuitwofyregardingescapingdicultsystems.ishaotictruecymore[20].andInthistheoincasewofdosurfacesseewithoutyconjugateapofointhists,yF1.2.rofeartireInand2,Ma??ehagivvaesurvsho2wnsurfacesthatnonpthisequanaturetithighliytisprelertiesatedetoneedthemakupptheerofLyorkapunoAsvallexpdetailsonenthetofsat[17,pwoinutdeaklye[12].eryInandfact,eryfortoanwyalwefordoneresultthesethisarofier-inorks,vearianrefertreaderprobabilitthymmeasuretheonofsanaloguesomeanandobtaine,explainonewhichaspcouldtsa.e.donebwhethermowingdknotheoftquestionatheofraisesargumenmeasuresInmiclassical3,eesdraofaystropoutlineenthetheof.onint4,ulesexplainrewthismainoffromextensioncanwhereeThein[6].etoofectofrespositiviscurvthetupp.esecr5,Lyeapunowvsameexpaso[17]nderiveanestimatettheattumpFinallyoinintappwithw.recThankssometoonthetumBirkhofromergoanddicfactstheorem,outtheKRuellevinequalitenyycanAbknoets.thenwrewrittenlikastofolloiws:thankdicyergoNalinictharamanisinmeasureducingLiouvilletotheqofsonnnforameinstextendsretulrestrictifromtheto3ositivMEASUREScurvLASSICALsMICsSEIOFthankOPYrENTRmanAndhelalso,fultheablothiswject.erWbreferoundreadoftotheorem,1.1]canmorebierewritten3
M
: S M ! M
(x;) := x V = (x;) d
1 S Mx
Z 2 T S M
0c(t) = (a(t);b(t)) t2 ( ; ) S M c(0) = c (0) =Z
H K (Z) =r 0 b(0) =r b(0) a (0) d (Z)
r X ()H
2
T S M =H V
S M 18
= (x;)2S M X;Y 2T S M
hX;Yi :=g (d (X);d (Y )) +g (K (X);K (Y )); x x
g x Mx
M S M

0 0J"(t) +R( (t);J(t)) (t) = 0;
0R(X;Y )Z X Y Z J (t) =
r 0 J(t) (t)
1C c : [a;b]!M s ( ; )s
@c =c Y (t) = (c (t))0 s js=0@s
2s7!c (t) c M C Y (t)s
c Y (t)
0 0c 8s2 ( ; ) c M (t) t (t)s

(V;W ) T S M H V

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents