La lecture à portée de main
Description
Sujets
Informations
Publié par | chaeh |
Nombre de lectures | 13 |
Langue | English |
Poids de l'ouvrage | 4 Mo |
Exrait
A pedestrian introduction to quantum computing
Or quantum computing poorly explained by a dummy
jerome.milan (at) lix.polytechnique.fr
June 2010Outline
Quantum computation
Shor’s algorithm
Grover’s algorithm
Quantum communication
2Introduction – Factorization records
# decimal digits
year
From “Thirty Years of Integer Factorization”, F. Morain, 2001
3Introduction – Factorization records
313
1039 2 - 1
RSA-768
(232 digits)
2007 2010
4
?
Introduction – Moore’s law
From “Cramming more components onto integrated circuits”, Gordon E. Moore.
Electronics, Volume 38, Number 8, April 19, 1965
5
???????,??????i??}??????iL?? ??i?????v???x???????
????V??
`?i>?????
}?????V???>?????>?????i???*??????{??x?xi{???????i?>
??iv?
Introduction – Moore’s law
From “Cramming more components onto integrated circuits”, Gordon E. Moore.
Electronics, Volume 38, Number 8, April 19, 1965
6
??????????x
???{???????????????????????x????>ii??9??x??????V??L?v???`?{i?????>n??}{i???}*?v??ii???? ???{????xi?????????n??????????????????????????x?Introduction – Moore’s law
Process size in nanometers
10000
11
µm
1000
130
nm
350
nm 32100
nm
4
10 nm22
nm
1970 1980 1990 2000 2010 2020
7Introduction – Moore’s law
Process size in nanometers
10000
11
µm
The end of Moore’s law
1000
130
nm
2020?
350
nm 32100
nm2030?
4What alternative?10 nm22
nm
1970 1980 1990 2000 2010 2020
8The quantum bit
Classical bit is either•
• 0 or 1
Quantum bit (qubit) can be•
• the eigenstates or |0 |1
• or a superposition |ψ=α|0+β|1
• are probability amplitudesα,β∈C
2 2• | α| + |β| =1
9The quantum bit
Geometrical interpretation – the Bloch sphere•
iφ|ψ = cos(θ/2)|0+ e sin(θ/2)|1
10
Un accès à la bibliothèque YouScribe est nécessaire pour lire intégralement cet ouvrage.
Découvrez nos offres adaptées à tous les besoins !