A posteriori error estimations of a coupled mixed and standard Galerkin method

icon

29

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

29

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Licence, Bac+2
A posteriori error estimations of a coupled mixed and standard Galerkin method for second order operators Emmanuel Creuse, Serge Nicaise Universite de Valenciennes et du Hainaut Cambresis LAMAV Institut des Sciences et Techniques de Valenciennes F-59313 - Valenciennes Cedex 9 France Emmanuel.Creuse, June 14, 2006 Abstract In this paper, we consider a discretization method proposed by Wieners and Wohlmuth [26] (see also [16]) for second order operators, which is a coupling between a mixed method in a sub-domain and a standard Galerkin method in the remaining part of the domain. We perform an a posteriori error analysis of residual type of this method, by combining some arguments from a posteriori error analysis of Galerkin methods and mixed methods. The reliability and efficiency of the estimator are proved. Some numerical tests are presented and confirm the theoretical error bounds. 1 Introduction Let us fix a bounded domain ? of R2, with a polygonal boundary. For the sake of simplicity we assume that ? is simply connected. The case of a multiply connected domain can be treated as in [12]. In this paper we consider the following second order problem: For f ? L2(?), let ? ? H10 (?) be the unique solution of div (A??) = ?f in ?, (1) where the matrix A ? L∞(?,R2?2) is supposed to be symmetric and uniformly positive definite.

  • div ? ?

  • priori error

  • crouzeix-raviart property

  • included into

  • all elements

  • universite de valenciennes et du hainaut cambresis

  • include standard

  • standard galerkin


Voir icon arrow

Publié par

Langue

English

of
a
A posteriori error estimations coupled mixed and standard Galerkin for second order operators
EmmanuelCreus´e,SergeNicaise
method
Universite´deValenciennesetduHainautCambre´sis
LAMAV Institut des Sciences et Techniques de Valenciennes F-59313 - Valenciennes Cedex 9 France Emmanuel.Creuse,Serge.Nicaise@univ-valenciennes.fr
June 14, 2006
Abstract
In this paper, we consider a discretization method proposed by Wieners and Wohlmuth [26] (see also [16]) for second order operators, which is a coupling between a mixed method in a sub-domain and a standard Galerkin method in the remaining part of the domain. We perform an a posteriori error analysis of residual type of this method, by combining some arguments from a posteriori error analysis of Galerkin methods and mixed methods. The reliability and efficiency of the estimator are proved. Some numerical tests are presented and confirm the theoretical error bounds.
1 Introduction Let us fix a bounded domain Ω ofR2 For the sake of simplicity, with a polygonal boundary. we assume that Ω is simply connected. The case of a multiply connected domain can be treated as in [12]. In this paper we consider the following second order problem: ForfL2(Ω), let θH1(Ω) be the unique solution of 0
div (Arθ) =fin Ω,(1) where the matrixAL,R2×2) is supposed to be symmetric and uniformly positive definite.
1
Voir icon more
Alternate Text