Analytic techniques in algebraic geometry
59 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Analytic techniques in algebraic geometry

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
59 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Licence, Bac+2
Analytic techniques in algebraic geometry Jean-Pierre Demailly Universite de Grenoble I, Institut Fourier Lectures given at the School held in Mahdia, Tunisia, July 14 – July 31, 2004 Analyse Complexe et Geometrie The purpose of this series of lectures is to explain some advanced techniques of Complex Analysis which can be applied to obtain fundamental results in algebraic geometry: vanishing of cohomology groups, embedding theorems, description of the geometric structure of projective algebraic varieties. Contents 0. Preliminary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Holomorphic Vector Bundles, Connections and Curvature . . . . . . . . . . . . . . . . . . . . 4 2. Bochner Technique and Vanishing Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 3. L2 Estimates and Existence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • kahler

  • every compact

  • c∞ vector bundle

  • compact complex

  • kahler metric

  • complex measures

  • hermitian vector

  • closed positive

  • projective space

  • distribution ∑ ?j?ktjk


Sujets

Informations

Publié par
Nombre de lectures 16
Langue English

Extrait

Analytictechniquesinalgebraicgeometry

Jean-PierreDemailly
Universite´deGrenobleI,InstitutFourier

LecturesgivenattheSchoolheldinMahdia,Tunisia,July14–July31,2004
AnalyseComplexeetGe´ome´trie

Thepurposeofthisseriesoflecturesistoexplainsomeadvancedtechniquesof
ComplexAnalysiswhichcanbeappliedtoobtainfundamentalresultsinalgebraic
geometry:vanishingofcohomologygroups,embeddingtheorems,descriptionofthe
geometricstructureofprojectivealgebraicvarieties.

Contents
0.PreliminaryMaterial
........................................................
1
1.HolomorphicVectorBundles,ConnectionsandCurvature
....................
4
2.BochnerTechniqueandVanishingTheorems
.................................
8
23.
L
EstimatesandExistenceTheorems
......................................
14
4.MultiplierIdealSheaves
....................................................
19
5.NefandPseudoeffectiveCones
.............................................
28
6.NumericalCharacterizationoftheKa¨hlerCone
.............................
30
7.ConesofCurves
............................................................
38
8.DualityResults
............................................................
40
9.Approximationofpshfunctionsbylogarithmsofholomorphicfunctions
.....
42
10.ZariskiDecompositionandMovableIntersections
..........................
46
11.TheOrthogonalityEstimate
...............................................
52
12.ProofoftheMainDualityTheorem
.......................................
54
13.References
................................................................
56

0.Preliminarymaterial

Let
X
beacomplexmanifoldand
n
=dim
C
X
.Thebundleofdifferentialforms
oftypr(
p,q
)isdenotedby
Λ
p,q
T
X

.Weareespeciallyinterestedin
closedpositive
currents
oftype(
p,p
)
2T
=
i
p
T
JK
(
z
)
dz
J

dz
J
,dz
J
=
dz
j
1

...

dz
j
p
,dT
=0
.
X|
J
|
=
|
K
|
=
p
Recallthatacurrentisadifferentialformwithdistributioncoefficients,andthat
sucha(
p,p
)currentissaidtobepositive(inthe“mediumpositivity”sense)ifthe

2J.-P.Demailly,Analytictechniquesinalgebraicgeometry
distribution
λ
J
λ
K
T
JK
isapositivemeasureforallcomplexnumbers
λ
J
.The
Pcoefficients
T
JK
arethencomplexmeasures.Importantexamplesofclosedpositive
(
p,p
)-currentsarecurrentsofintegrationoveranalyticcyclesofcodimension
p
:
Z
=
c
j
Z
j
,
[
Z
]=
c
j
[
Z
j
]
XXwherethecurrent[
Z
j
]isdefinedbydualityas
Zh
[
Z
j
]
,u
i
=
u
|
Z
j
Zjforevery(
n

p,n

p
)testform
u
on
X
.Anotherimportantexampleofpositive
(1
,
1)-currentistheHessianform
T
=
i∂∂ϕ
ofaplurisubharmonicfunctiononan
openset


X
.A
Ka¨hlermetric
on
X
isapositivedefinitehermitian(1
,
1)-form
ω
(
z
)=

jk
(
z
)
dz
j

dz
k
suchthat

=0
,
X1

j,k

n
withsmoothcoefficients.Toeveryclosedreal(1
,
1)-form(orcurrent)
α
isassociated
itsDeRhamcohomologyclass
{
α
}∈
H
1
,
1
(
X,
R
)

H
2
(
X,
R
)
.
Wedenotehereby
H
k
(
X,
C
)(resp.
H
k
(
X,
R
))thecomplex(real)DeRhamcoho-
mologygroupofdegree
k
,andby
H
p,q
(
X,
C
)thesubspaceofclasseswhichcanbe
representedasclosed(
p,q
)-forms,
p
+
q
=
k
.
Wewillrelyonthenontrivialfactthatallcohomologygroupsinvolved(De
Rham,Dolbeault,
...
)canbedefinedeitherintermsofsmoothformsorintermsof
currents.Infact,ifweconsidertheassociatedcomplexesofsheaves,formsandcur-
rentsbothprovideacyclicresolutionsofthesamesheaf(locallyconstantfunctions,
resp.holomorphicsections),hencedefinethesamecohomologygroups.
Inthesequel,wearemostlyinterestedinthegeometryof
compactcomplex
manifolds
.Thecompactnessassumptionbringsmanyinterestingfeaturessuchas
finitessresultsforthecohomologyorthetopology,Stokestheorem,intersection
formulasofBezouttype,etc.A
projectivealgebraicmanifold
isaclosedsubmanifold
X
ofsomecomplexprojectivespace
P
N
=
P
C
N
definedbyafinitecollectionof
homogeneouspolynomialequations
P
j
(
z
0
,z
1
,...,z
N
)=0
,
1

j

k
(insuchawaythat
X
isnonsingular).AnimportanttheoremduetoChowstates
thateverycomplexanalyticsubmanifoldof
P
N
isinfactautomaticallyalgebraic,i.e.
definedasabovebyafinitecollectionofpolynomials.Wewillprovethisinsection4.
However,wewillsometimesneedtostudylocalsituations,andinthatcaseitis
alsousefultoconsiderthecaseof(pseudoconvex)opensetsin
C
n
.

(0.1)Definition.
a)
Ahermitianmanifoldisapair
(
X,ω
)
where
ω
isa
C

positivedefinite
(1
,
1)
-
formon
X
.

0.Preliminarymaterial3
b)
X
issaidtobeaKa¨hlermanifoldif
X
carriesatleastoneKa¨hlermetric
ω
.

Since
ω
isreal,theconditions

=0,
d

ω
=0,
d
′′
ω
=0areallequivalent.In
localcoordinatesweseethat
d

ω
=0ifandonlyif
∂ω
jk
=
∂ω
lk
,
1

j,k,l

n.
∂z
l
∂z
j
Asimplecomputationgives
nω=det(
ω
jk
)i
dz
j

dz
j
=2
n
det(
ω
jk
)
dx
1

dy
1
∧∧
dx
n

dy
n
,
^n
!
1

j

n
where
z
n
=
x
n
+i
y
n
.Thereforethe(
n,n
)-form
(0
.
2)
dV
=1
ω
n
!nnthen
X
ω
=
n
!Vol
ω
(
X
)
>
0.Thissimpleremarkalreadyimpliesthatcompact
ispos
R
itiveandcoincideswiththehermitianvolumeelementof
X
.If
X
iscompact,
Ka¨hlermanifoldsmustsatisfysomerestrictivetopologicalconditions:
(0.3)Consequence.
a)
If
(
X,ω
)
iscompactKa¨hlerandif
{
ω
}
denotesthecohomologyclassof
ω
in
H
2
(
X,
R
)
,then
{
ω
}
n
6
=0
.
b)
If
X
iscompactKa¨hler,then
H
2
k
(
X,
R
)
6
=0
for
0

k

n
.Infact,
{
ω
}
k
isa
nonzeroclassin
H
2
k
(
X,
R
)
.

(0.4)Example.
Thecomplexprojectivespace
P
n
isKa¨hler.AnaturalKa¨hlermetric
ω
FS
on
P
n
,calledthe
Fubini-Studymetric
,isdefinedby
ip

ω
FS
=
d

d
′′
log
|
ζ
0
|
2
+
|
ζ
1
|
2
+

+
|
ζ
n
|
2
π2where
ζ
0

1
,...,ζ
n
arecoordinatesof
C
n
+1
andwhere
p
:
C
n
+1
\{
0
}→
P
n
isthe
projection.Let
z
=(
ζ
1

0
,...,ζ
n

0
)benonhomogeneouscoordinateson
C
n

P
n
.
Thenacalculationshowsthat
ω
FS
=i
d

d
′′
log(1+
|
z
|
2
)

F
n
S
=1
.
Zπ2nPItisalsowell-knownfromtopologythat
{
ω
FS
}∈
H
2
(
P
n
,
Z
)isageneratorofthe
cohomologyalgebra
H

(
P
n
,
Z
).

(0.5)Example.
A
complextorus
isaquotient
X
=
C
n

byalattice
Γ
ofrank2
n
.
i
ω
jk
dz
j

dz
k
withconstantcoefficientsdefinesaKa¨hlermetricon
X
.
Th
P
en
X

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents