NOM Date PRENOM Groupe
4 pages
Français

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

NOM Date PRENOM Groupe

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
4 pages
Français
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur
NOM : Date : . PRENOM : Groupe : . Mathematiques pour la Biologie (semestre 2) : Feuille-reponses du TD 3 Modele dynamique pour deux especes en competition Cette feuille-reponses est prevue pour une seance complete (2 heures environs). Le systeme de Lotka-Volterra nous a permis de modeliser la dynamique de deux populations presentant une relation de type proies-predateurs. Nous allons a present modeliser la dynamique de deux populations en competition, par exemple parce qu'elles partagent la meme nourriture ou le meme territoire. Notre objectif est d'etudier les possibilites de coexistence de ces deux populations. On choisit de faire les hypotheses suivantes : – En l'absence de l'autre espece, chacune des deux especes suit un modele logistique (x?(t) = (?1 ? ?1x(t))x(t) et y?(t) = (?2 ? ?2y(t))y(t)). – le taux de mortalite supplementaire pour chacune des especes du a la presence de l'autre espece est proportionnel a la fois a la taille de l'une et de l'autre des deux populations (et donc proportionel a leur produit). Sous ces hypotheses, le systeme peut s'ecrire : { x?(t) = (?1 ? ?1x(t) ? ?12y(t))x(t) y?(t) = (?2 ? ?2y(t)? ?21x(t))y(t) (1) ou les constantes ?1, ?2, ?1, ?2, ?12

  • taux de mortalite supplementaire

  • population initiale des scorpions rouges

  • systeme de lotka-volterra

  • isoclines du systeme

  • comportement de la population de scorpions noirs

  • scorpions noirs

  • meme question


Sujets

Informations

Publié par
Nombre de lectures 34
Langue Français

Extrait

UniversitÉ Claude Bernard Lyon 1 - automne 2009 Licence Sciences, Technologies, Sant - mention mathmatiques
UE Math III Algbre - MAT2002L ————————
PLANCHE DEXERCICESIII - POLYNôME MINIMAL- THORèME DECAYLEY-HAMILTON-
F Exercice 1.Dterminer le polynÔme minimal des matrices suivantes, oÙa6=b:       a 0 0a 1 0a 1 0a 1 0a 0 0       0 a 0, 0a 1, 0a 0, 0a 0, 0b 0, 0 0 a0 0 a0 0 a0 0 b0 0 b       a 1 0 0a 1 0 0a 1 0 0a 1 0 0a 1 0 0 0 a 1 00 a 1 00 a 0 00 a 0 00 a 0 0     , , , , .       0 0 a 10 0 a 00 0 a 10 0 b 10 0 b 0 0 0 0 a0 0 0 a0 0 0 a0 0 0 b0 0 0 b F Exercice 2.SoientEunK-espace vectoriel de dimensionnetuun endomorphisme nilpotent deE. 1. Sans utiliser le polynÔme minimal, montrer que le polynÔme caractristique deuest n n pu= (−1)X. Comment procder avec le polynÔme minimal ? 2. Par rcurrence, montrer qu’il existe une baseBdeEtelle que la matrice deudans la base Bsoit triangulaire suprieure avec des0sur la diagonale. 3. Inversement, montrer que tout endomorphisme deEdont la matrice dans une baseBde Eest triangulaire avec des0sur la diagonale est nilpotente d’indice de nilpotencep6n. F Exercice 3.SoitRn[X]leR-espace vectoriel form des polynÔmes de degr infrieur ou gal Àn. Soitu:Rn[X]Rn[X]l’application qui À un polynÔmePassocie le reste de la division 2 euclidienne dePparX1. 1. Montrer queuest linaire. 2 2. Calculeruet en dduire queuest diagonalisable. F Exercice 4.Trouver une condition ncessaire et suffisante pour que les matrices relles sui-vantes soient diagonalisables :   a b c1 a b   A=,0 a dB=0 1 c. 0 0 a0 0 d F Exercice 5. 1. SoitJune matrice complexe deMn(C)dfinie par   0 10 .. .0 . . 0 01.. . . . . .. .0 . . 0.1 1 0. . .0 p 1.1. CalculerJpour tout entierp{1, . . . , n}. 1.2. En dduire queJest diagonalisable. n1 1.3. Montrer que1n,J, . . . ,Jsont linairement indpendants.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents