Jordan Normal and Rational Normal Form Algorithms

icon

15

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

15

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Jordan Normal and Rational Normal Form Algorithms Bernard Parisse, Morgane Vaughan Institut Fourier CNRS-UMR 5582 100 rue des Maths Université de Grenoble I 38402 St Martin d'Hères Cédex Résumé In this paper, we present a determinist Jordan normal form algorithms based on the Fadeev formula : (? · I ?A) ·B(?) = P (?) · I where B(?) is (? · I ? A)'s comatrix and P (?) is A's characteristic polynomial. This rational Jordan normal form algorithm differs from usual algorithms since it is not based on the Frobenius/Smith normal form but rather on the idea already remarked in Gantmacher that the non-zero column vectors of B(?0) are eigenvec- tors of A associated to ?0 for any root ?0 of the characteristical polynomial. The complexity of the algorithm is O(n4) field operations if we know the factoriza- tion of the characteristic polynomial (or O(n5 ln(n)) operations for a matrix of integers of fixed size). This algorithm has been implemented using the Maple and Giac/Xcas computer algebra systems. 1 Introduction Let's remember that the Jordan normal form of a matrix is : A = ? ? ? ? ? ? ? ? ? ? ? ? ?1 0 0 . . .

  • a? ?i

  • bk can

  • matrice polynomiale

  • adding any field

  • adding

  • space associated

  • field has

  • a? ?i ·


Voir Alternate Text

Publié par

Nombre de lectures

16

Langue

English

JordanNormalandRationalNormalFormAlgorithmsBernardParisse,MorganeVaughanInstitutFourierCNRS-UMR5582100ruedesMathsUniversitédeGrenobleI38402StMartind’HèresCédexRésuméInthispaper,wepresentadeterministJordannormalformalgorithmsbasedontheFadeevformula:(λIA)B(λ)=P(λ)IwhereB(λ)is(λIA)’scomatrixandP(λ)isA’scharacteristicpolynomial.ThisrationalJordannormalformalgorithmdiffersfromusualalgorithmssinceitisnotbasedontheFrobenius/SmithnormalformbutratherontheideaalreadyremarkedinGantmacherthatthenon-zerocolumnvectorsofB(λ0)areeigenvec-torsofAassociatedtoλ0foranyrootλ0ofthecharacteristicalpolynomial.The4complexityofthealgorithmisO(n)eldoperationsifweknowthefactoriza-tionofthecharacteristicpolynomial(orO(n5ln(n))operationsforamatrixofintegersofxedsize).ThisalgorithmhasbeenimplementedusingtheMapleandGiac/Xcascomputeralgebrasystems.1IntroductionLet’srememberthattheJordannormalformofamatrixis:λ100...00?λ20...000?λ3...0000?...00A=................000..?λn10000...?λnwherethereare1or0insteadofthe?.Itcorrespondstoafullfactorizationofthecha-racteristicalpolynomial.Iftheeldofcoefcientsisnotalgebraicallyclosed,thisJor-danformcanonlybeachievedbyaddingaeldextension.TheJordanrationalnormal1
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text