Area minimizing vector fields on round spheres Vincent Borrelli and Olga Gil Medrano

icon

19

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

19

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Doctorat, Bac+8
Area minimizing vector fields on round 2-spheres Vincent Borrelli and Olga Gil-Medrano Abstract. – A vector field V on a n-dimensional round sphere Sn(r) defines a submanifold V (Sn) of the tangent bundle TSn. The Gluck and Ziller question is to find the infimum of the n-dimensional volume of V (Sn) among unit vector fields. This volume is computed with respect to the natural metric on the tangent bundle as defined by Sasaki. Surprisingly, the problem is only solved for dimension three [10]. In this article we tackle the question for the 2-sphere. Since there is no glob- ally defined vector field on S2, the infimum is taken on singular unit vector fields without boundary. These are vector fields defined on a dense open set and such that the closure of their image is a surface without boundary. In particular if the vector field is area minimizing it defines a minimal surface of T 1S2(r). We prove that if this minimal surface is homeomorphic to RP 2 then it must be the Pontrya- gin cycle. It is the closure of unit vector fields with one singularity obtained by parallel translating a given vector along any great circle passing through a given point. We show that Pontryagin fields of the unit 2-sphere are area minimizing. 2000 Mathematics Subject Classification : 53C20 Keywords and phrases : Minimal submanifold, vector field, area minimiz- ing surface, Pontryagin cycles.

  • vector field

  • riemannian manifold

  • ing surface

  • dimensional spheres

  • any great

  • field should

  • projective space

  • tryagin cycles

  • metric


Voir icon arrow

Publié par

Langue

English

Areaminimizingvectorfieldsonround2-spheresVincentBorrelliandOlgaGil-MedranoAbstract.–AvectorfieldVonan-dimensionalroundsphereSn(r)definesasubmanifoldV(Sn)ofthetangentbundleTSn.TheGluckandZillerquestionistofindtheinfimumofthen-dimensionalvolumeofV(Sn)amongunitvectorfields.ThisvolumeiscomputedwithrespecttothenaturalmetriconthetangentbundleasdefinedbySasaki.Surprisingly,theproblemisonlysolvedfordimensionthree[10].Inthisarticlewetacklethequestionforthe2-sphere.Sincethereisnoglob-allydefinedvectorfieldonS2,theinfimumistakenonsingularunitvectorfieldswithoutboundary.Thesearevectorfieldsdefinedonadenseopensetandsuchthattheclosureoftheirimageisasurfacewithoutboundary.InparticularifthevectorfieldisareaminimizingitdefinesaminimalsurfaceofT1S2(r).WeprovethatifthisminimalsurfaceishomeomorphictoRP2thenitmustbethePontrya-gincycle.Itistheclosureofunitvectorfieldswithonesingularityobtainedbyparalleltranslatingagivenvectoralonganygreatcirclepassingthroughagivenpoint.WeshowthatPontryaginfieldsoftheunit2-sphereareareaminimizing.2000MathematicsSubjectClassification:53C20Keywordsandphrases:Minimalsubmanifold,vectorfield,areaminimiz-ingsurface,Pontryagincycles.1IntroductionandmainresultsThevolumeVol(V)ofasmoothunitvectorfieldV:MnT1Mnisthen-dimensionalvolumeofitsimageV(M)asasubmanifoldoftheunittangentbundleT1M.Anaturalquestion,thatgoesbacktothepioneeringworkofH.GluckandW.Ziller[10],istoaskforthe(absolute)minimizersofthevolume.Moreprecisely,givenanorientedcompactRiemannianmanifold(M,g)thequestionistodetermineVΓin(fT1M)Vol(V)1
Voir icon more
Alternate Text