Asymptotics and stability for global solutions to the

icon

34

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

34

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Doctorat, Bac+8
Asymptotics and stability for global solutions to the Navier-Stokes equations Isabelle Gallagher a Drago? Iftimie a,b Fabrice Planchon c Abstract We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution. Introduction We consider the incompressible Navier-Stokes equations in R3, (1) ? ?? ?? ∂u ∂t = ∆u?? · (u? u)??pi, ? · u = 0, u(x, 0) = u0(x). There exist essentially two di?erent kinds of results on the Cauchy problem for these equations. In the pioneering work [15], Jean Leray introduced the concept of weak solutions and proved global existence for datum u0 ? L2. However, their uniqueness (or propagation/breakdown of regularity for smooth data) has remained an open problem. In [11], H. Fujita and T. Kato obtained solutions for datum u0 ? H˙ 1 2 by semi-group methods. These solutions are unique ([8]) but only local in time: u ? C([0, T ?), H˙ 1 2 ), unless one is willing to make a smallness assumption on the datum.

  • global solution

  • then

  • global strong

  • l˜rt b˙

  • blow-up time

  • sp def

  • there exists


Voir icon arrow

Publié par

Nombre de lectures

30

Langue

English

a a,b c
3R
 ∂u = Δu−∇·(u⊗u)−∇π,
∂t
∇·u = 0,
u(x,0) = u (x).0
2u ∈L0
1˙ 2u ∈ H0
1
? ˙ 2u ∈ C([0,T ),H )
−1BMO
2 3 1/2˙L L H
pL 2 ≤ p ≤ 3
2L
2L
3L
attemptincompressibleapproacNavvier-Stokconsiderations:esexistencequationsisinnotthesmallconsiderstrong,vier-Stok(1)uneinWlductionestroisIn,solution.eeglobalesalh,suc.-G.ofdatumystructurestabilittthebobtainmiethewdieren,olvertiesarianpropotimeotheringaperagingFvGallaCalder?nandwquenessnsunitowithwasymptoticstlythisandbiningloComoftime.torgevier-StokaenltheforgeneralsolutionmansmallersivaasThereyexistofessenrelatetiallythetqualitwAsymptoticsothedierenthetinkindsPlancofOnresultsinonbridgetheetCaucwhsolutionsyagherproblemIsabforsolutions,thesevequations.ofInsthetipioneeringdatumw,orkglobal[15],TheseJeanlaterLeraindepyyinritrodedduocedytheTheconcepteakoftimatelywspeakthesequations,otolinequu.tihand,oisnsitandappliedproparabv(oredsglobraldoexistenceinforadatumecialeNalikOneesusevspacesehato.energyHinothewwhiceveloer,ntheirnormunaniquenessdatum(ornpropagationh/breakdoabricewn[13].oftheregularithand,yanfortosmotheothbdata)whasnremainedeakanIftimieopandenDrago?problem.(orInelle[11],equationsH.)FC.ujitaproandedT.eKatoglobalobtainedeaksolutionsoforudatumobwithitineNavtheprosolutionseforW[3].bresultsyeresemi-grouprecomethoeredds.endenThesebsolutionsPareLemaunique?([8])extenbuttoonlyiflormlycalcallyinstabilittime:[14].equations.theoryeswvier-StoksolutionsNainthetiedtothesolutionecicstrongofglobalNaprioriesaandanparticularconsidertheeergy,aliunlessyoneOnWotherAbstractKato'sHencehNamoreesand1canaesmallnesstoassumptionyonotheicdatum.dispThise)lineeoflineawequations,orkithasesbuseeenansubsequenwtlyyextenspdedformbtheyvier-Stokmanequations.ycanauthors,theseeof[14]tforforadatumbibliographscalingythe.ineTheymostvrecenestandrnorm,ehsbuwltscale-istatesvglobaltwforell-pequations,osednessmelyforis.wilthelingvier-Stoktoequationsmake3L
2L
2 −1L BMO
3 ?u ∈ C (L ) Tt
?T = +∞
3L
3L
3L
3−1
p −1˙u ∈B 1≤p,q<∞ BMOp,q0
3L
2L
−1BMO
3L
1˙ 2H
3L
3u∈C (L )t
3• L
lim ku(·,t)k = 0,3
t→+∞
eakexistencetooyfbstrongosolutionsbtodolargesmallnessdatumcanbstateetprecludewdatumeeneakstrongforglobal([20]),andinvidecanprousetoinformedcoincideintheoriesd.thisInindetheenergypresenmisstourwonork,ofw.ethedevhelopthethistheapproacourhofindieren3Denand[1]).studyrequireatoprioriofglobalnstrongasolutions.inLetandusecionsiderwia.particulartcaseoofknoourinsteadresults:wisetakoliceeaedstronghsolutiontostrongyandykbeabwcallytheb2D:someinb.theSudectohtathesolutionofadmitswaasmaximalthistimehofvexistenceIthvapproacis.energyLet0.1usLetsuppscaling.osetothatzerosimilarwithabusedeeprowresults(whicclheakisvideonlyroproblendedvwedend-pforstrongsmall,datawhicorhniquessptoecialOnecasesrellikoineyaxisymetricedata).equations.Intavrstdevstep,ywceaproallovve[3],thereundercaninnotndition:bconditionederivbloasw-upductatofinnitsolutions.yW.eInforfact,stabilitweecomprohv(whiceeaendenstrongertecresult,awhicthehork)isestimatesderabca(afterypretowzerowofthisthecarried[10],usIntronormtheoremforeslargeytime.atThisstatemensmallnesstheat(cinnitlatery3.2),cancounbyecasecom[9].binedabilitywtoithypseemsersistenceeofgloballoThen,caltendsiinnitnresptimewasaidvspaces,erageswtowillproedvveourthatforvuariousnmixedsolutions,spacew-innitetime,normstharepgloballytogetherdenedareforRemarksucehtheaoinglobaltheoriessolution.andThen,wwferprohceedtectoareprownvbreakewn.thehasstabilittoyyofpthistsolution.decaHence,estimatesthethsetparaboflinearizedinitialEstimatesdatathisinypdatum.haofeforeenwhicelopphbonePhasTglobalhamitcexistenceiisnopanden.wWrecoeernotethethatstabilittheresultkaeyatstepnitiscotosucobtainadecahasyeenatedin[14]nitay:y-prounderofsucconstructionhloanInassumption,wcomsolutions.binedewithelievlothatcalstrongsinformationpeace-timeyinbtegrabilittreatedyy,biningstabapproacioflitasymptoticsyhinbcasematheindepwtastheobtainedhnicalinols[12].tOurinappropresenacwhwithretloniespaonolicfrequencywlcompletionothecalizationsandtparadierenork,tialecalculus,erecomthatbinedwwithindeedsmooutothLetiinningductionpropaertieswhicofdothenotheatandingBesoandspaces,(namelyleast,itsregularitt.ystatesgainsderivthroughcasetimeoaeredvberaging).TheoremTheandreaderthematerpartytheconsultinequalit[6]theforstateainvTheoremery(Stniiceusepresen)tationattemptinanthetoconThistextbofantheprioriNasolutionvierStok(1).estoequations.solutionHencetotheatnaturalyframewectork,extendedeglobalsupbercriticalecomesedatatoinesolutions,canBesovk2ernel• ε(u) kv −u k < ε(u)0 0 3
3v∈C (L )t
supkv(·,t)−u(·,t)k <C(u)kv −u k .3 0 0 3
t≥0
n b bφ S(R ) φ = 1 |ξ| ≤ 1 φ = 0 |ξ| > 2
nj jφ (x) = 2 φ(2 x).j
S =φ ∗·, Δ =S −S .j j j j+1 j
0 n s˙f S (R ) f Bp,q
Pm n• Δ (f) f s <j−m p
js q• = 2 kΔ (f)k p lj j L
0 n+1u(x,t)∈S (R ) Δ xj
sfρ ˙u∈L ((a,b),B )p,q
js q
p2 kΔ uk ρ =ε ∈l ,j jL ((a,b),L )x
Wonappexistencetheandwithprop[7]ertiesrestofassolutionshiniBesotextvcalizationspaces.onlySvioromesecondofethempcanhbtheeteasily1.2derivletedariable.frominthesevestimatesofinvthedistributionfourthtakingsection,not.anindariousthistoaneedloflotowswthtroespacepresenvierStoktationetoasbeetoessensatiallyBesoself-confortained.and1useOnathelargeblobw-uptooftempstrongaddressessoluandtquotieniolynomialsonsTheFtheorearthenormsconofveloneniencew-upofwilltheslireader,mowspaces,egrecallccounthevusualreferdenitiontheofofBesoevthespaces.theDefinitionequations.1.1bloLetsection2.1,ws.bisepapafrequencyfurespnctiontheine1.1,thatTheoremssetting.tomorethisstatemenreferifsucfhsections.thatinewWsumsolutionanistimeforatstable:ehathereconexistsergessucthehaanderedthatififsection,Thetheafterforthelotcalpsolutioniftosolution.(1s,quenceandconstructingdenenaturally)apphwhicisspace-timewhicvterms,ersistenceorderbergsglobal,andw.loewithalsowithaequationgolictparabdicationwnthosefrequencytakloncalizationinopaeratorstaretimedenedariable;beytoaforforinestimatesductionpriorithatayptoofotedindevconisofsectionNalastesandDefinitionfourthLetThestudysolution.warsthInsucfolloLetorganizedofandberebinaylostabilitwiththeectwiththedealsvsectionW.willWyeofsaTheyvthirdgeneralbtheelongtsspreciseto3.2theandandisolution,Inthe3.1ifpreviousandtheknorecallconstaneeralendix,ThetresultspartialonlyofifareprioriglobalThen3thejs
p qkuk = k2 kΔ uk ρ k ,fρ ˙s j ‘L ((a,b),L )L ((a,b),B ) xp,q
ρf s s˙ fρ ˙L (B ) = L ((0,T),B )p,q p,qT
ρ s ρ sf ˙ ˙ρ ≥ q L ((a,b),B ) ⊂ L ((a,b),B )p,q p,q
f 2 1 2 1 ∞ s ∞ s 2 s˙ ˙ g ˙ ˙ ˙L ((0,T),H ) =L ((0,T),H ) L (B )⊂L (H )⊂L (H )2,2loc loc loc
3
s = −1+ ·p
p
p q [1,∞)
p≥ 3
sp˙u Bp,q0
sp˙Bp,q
sp˙u ∈B u u0 p,q 0
?T
2 s +s p? p ?r r˙ f ˙u∈C [0,T );B ∩L B ∀r∈ [1,∞], ∀t<Tp,q p,qt
? ?T T <∞
s? p˙u6∈C [0,T ];B .p,q
?
sT =∞ lim ku(t)k p = 0˙Bp,qt→∞
2s +p rgr ˙u∈L B ∀r∈ [1,∞].p,q∞
?T
?T
3r sf ˙L B s∈ (0, )p,q p
normsaimeofustthis.sectioninis.tothenproaccordingvtoeofthallater,aswlonghasas1.2thistisolutionWisoneconothertin,uousvinactuallytimeholdwithevdefaluesInineA.1).the4eThetimewnandoin,thebloew-upblodoormseswithnotThen,ofccuer.hMorethatpreciselyose,ewandeMoreowilltheproandvresultseshallthefollofolloandwingMosttheorem.couTheoremwhen1.11.1Letnotetiandubloldeneodened.sRemarkgthestronuitcalofbeetimeaydivhergenceefreetimevtheector-eld.previousLetsamelotsbholds.eifthesloocalwstrongmsolutionnecessarilyassoaciatedetoprouniqueinasuppandshallexistsWthereintheforblosequelw-upvtime,ifi.e.inthenv,proinwdataTheinitialnoteanewithwingequationsthees.vier-Stok,Nanotablythe.considerrseofwoneifcaseatInthRemarkwndefell-knowillwwisRemarkItTheone.w-upthatdeffromiscedelldeduIndeed,etobA.2cantosconensycatimeotherthethewsinceconsider,thatmaximalereandmapapbthiscisosenmaximalbsucthehw-upthatoftheofabnodenition.vtheeasrethelarearequirementandion(see.Theoremp = 2
2
s +pr rf ˙u ∈ L B T Tp,qT
kuk 2 t =T
s +pr rf ˙L Bp,qt sp? ?˙T C [0,T );B T > Tp,q
?T <∞
sp? ˙u∈C [0,T ];Bp,q
2srg ˙u∈L B ∀r∈ [1,∞], s =s + ·? pp,qT r
1 ps > −s (⇔ r < − = )p s p−3psp? ˙C [0,T ];Bp,q
u =u +u1 2
1
sku k p ≤1 ˙Bp,q 2K1
K u1 2
skuk ≤K ku k p +K ku k s kuk +K kuk s ku kp pr s 1 0 ˙ 1 1 ∞ r s 1 ∞ 2 r sf ˙ g ˙ f ˙ g ˙ f ˙BL B p,q L B L B L B L Bp,∞ p,∞t p,q t t p,q t t p,q
K1
1
s s sku k p = supku k p ≤ supku k p ≤1 g∞ ˙ 1 ˙ 1 ˙L B B Bp,∞ p,qp,∞t 2K1[0,t] [0,t]
1
s skuk ≤K ku k p + kuk +K kuk p ku kr r ∞ rf ˙s 1 0 ˙ f ˙s 1 g ˙ 2 f ˙sL B B L B L B L Bp,q p,∞p,q p,q p,qt 2 t t t
timeinbloentimegivthisteimpliestimatoes1.1.theforapplytitwatnoalene(seeWconsidert.Pranprowcouldeossiblywwhicaswothblosmoisaseiscase).andrswcon(3)eloebof(3)happrelationesofTheoremttendconstanthethew-upiscouldwherethis(2)in,tme.tiupallexistenceformathat,5

Voir icon more
Alternate Text