34
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
34
pages
English
Ebook
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
a a,b c
3R
∂u = Δu−∇·(u⊗u)−∇π,
∂t
∇·u = 0,
u(x,0) = u (x).0
2u ∈L0
1˙ 2u ∈ H0
1
? ˙ 2u ∈ C([0,T ),H )
−1BMO
2 3 1/2˙L L H
pL 2 ≤ p ≤ 3
2L
2L
3L
attemptincompressibleapproacNavvier-Stokconsiderations:esexistencequationsisinnotthesmallconsiderstrong,vier-Stok(1)uneinWlductionestroisIn,solution.eeglobalesalh,suc.-G.ofdatumystructurestabilittthebobtainmiethewdieren,olvertiesarianpropotimeotheringaperagingFvGallaCalder?nandwquenessnsunitowithwasymptoticstlythisandbiningloComoftime.torgevier-StokaenltheforgeneralsolutionmansmallersivaasThereyexistofessenrelatetiallythetqualitwAsymptoticsothedierenthetinkindsPlancofOnresultsinonbridgetheetCaucwhsolutionsyagherproblemIsabforsolutions,thesevequations.ofInsthetipioneeringdatumw,orkglobal[15],TheseJeanlaterLeraindepyyinritrodedduocedytheTheconcepteakoftimatelywspeakthesequations,otolinequu.tihand,oisnsitandappliedproparabv(oredsglobraldoexistenceinforadatumecialeNalikOneesusevspacesehato.energyHinothewwhiceveloer,ntheirnormunaniquenessdatum(ornpropagationh/breakdoabricewn[13].oftheregularithand,yanfortosmotheothbdata)whasnremainedeakanIftimieopandenDrago?problem.(orInelle[11],equationsH.)FC.ujitaproandedT.eKatoglobalobtainedeaksolutionsoforudatumobwithitineNavtheprosolutionseforW[3].bresultsyeresemi-grouprecomethoeredds.endenThesebsolutionsPareLemaunique?([8])extenbuttoonlyiflormlycalcallyinstabilittime:[14].equations.theoryeswvier-StoksolutionsNainthetiedtothesolutionecicstrongofglobalNaprioriesaandanparticularconsidertheeergy,aliunlessyoneOnWotherAbstractKato'sHencehNamoreesand1canaesmallnesstoassumptionyonotheicdatum.dispThise)lineeoflineawequations,orkithasesbuseeenansubsequenwtlyyextenspdedformbtheyvier-Stokmanequations.ycanauthors,theseeof[14]tforforadatumbibliographscalingythe.ineTheymostvrecenestandrnorm,ehsbuwltscale-istatesvglobaltwforell-pequations,osednessmelyforis.wilthelingvier-Stoktoequationsmake3L
2L
2 −1L BMO
3 ?u ∈ C (L ) Tt
?T = +∞
3L
3L
3L
3−1
p −1˙u ∈B 1≤p,q<∞ BMOp,q0
3L
2L
−1BMO
3L
1˙ 2H
3L
3u∈C (L )t
3• L
lim ku(·,t)k = 0,3
t→+∞
eakexistencetooyfbstrongosolutionsbtodolargesmallnessdatumcanbstateetprecludewdatumeeneakstrongforglobal([20]),andinvidecanprousetoinformedcoincideintheoriesd.thisInindetheenergypresenmisstourwonork,ofw.ethedevhelopthethistheapproacourhofindieren3Denand[1]).studyrequireatoprioriofglobalnstrongasolutions.inLetandusecionsiderwia.particulartcaseoofknoourinsteadresults:wisetakoliceeaedstronghsolutiontostrongyandykbeabwcallytheb2D:someinb.theSudectohtathesolutionofadmitswaasmaximalthistimehofvexistenceIthvapproacis.energyLet0.1usLetsuppscaling.osetothatzerosimilarwithabusedeeprowresults(whicclheakisvideonlyroproblendedvwedend-pforstrongsmall,datawhicorhniquessptoecialOnecasesrellikoineyaxisymetricedata).equations.Intavrstdevstep,ywceaproallovve[3],thereundercaninnotndition:bconditionederivbloasw-upductatofinnitsolutions.yW.eInforfact,stabilitweecomprohv(whiceeaendenstrongertecresult,awhicthehork)isestimatesderabca(afterypretowzerowofthisthecarried[10],usIntronormtheoremforeslargeytime.atThisstatemensmallnesstheat(cinnitlatery3.2),cancounbyecasecom[9].binedabilitywtoithypseemsersistenceeofgloballoThen,caltendsiinnitnresptimewasaidvspaces,erageswtowillproedvveourthatforvuariousnmixedsolutions,spacew-innitetime,normstharepgloballytogetherdenedareforRemarksucehtheaoinglobaltheoriessolution.andThen,wwferprohceedtectoareprownvbreakewn.thehasstabilittoyyofpthistsolution.decaHence,estimatesthethsetparaboflinearizedinitialEstimatesdatathisinypdatum.haofeforeenwhicelopphbonePhasTglobalhamitcexistenceiisnopanden.wWrecoeernotethethatstabilittheresultkaeyatstepnitiscotosucobtainadecahasyeenatedin[14]nitay:y-prounderofsucconstructionhloanInassumption,wcomsolutions.binedewithelievlothatcalstrongsinformationpeace-timeyinbtegrabilittreatedyy,biningstabapproacioflitasymptoticsyhinbcasematheindepwtastheobtainedhnicalinols[12].tOurinappropresenacwhwithretloniespaonolicfrequencywlcompletionothecalizationsandtparadierenork,tialecalculus,erecomthatbinedwwithindeedsmooutothLetiinningductionpropaertieswhicofdothenotheatandingBesoandspaces,(namelyleast,itsregularitt.ystatesgainsderivthroughcasetimeoaeredvberaging).TheoremTheandreaderthematerpartytheconsultinequalit[6]theforstateainvTheoremery(Stniiceusepresen)tationattemptinanthetoconThistextbofantheprioriNasolutionvierStok(1).estoequations.solutionHencetotheatnaturalyframewectork,extendedeglobalsupbercriticalecomesedatatoinesolutions,canBesovk2ernel• ε(u) kv −u k < ε(u)0 0 3
3v∈C (L )t
supkv(·,t)−u(·,t)k <C(u)kv −u k .3 0 0 3
t≥0
n b bφ S(R ) φ = 1 |ξ| ≤ 1 φ = 0 |ξ| > 2
nj jφ (x) = 2 φ(2 x).j
S =φ ∗·, Δ =S −S .j j j j+1 j
0 n s˙f S (R ) f Bp,q
Pm n• Δ (f) f s <j−m p
js q• = 2 kΔ (f)k p lj j L
0 n+1u(x,t)∈S (R ) Δ xj
sfρ ˙u∈L ((a,b),B )p,q
js q
p2 kΔ uk ρ =ε ∈l ,j jL ((a,b),L )x
Wonappexistencetheandwithprop[7]ertiesrestofassolutionshiniBesotextvcalizationspaces.onlySvioromesecondofethempcanhbtheeteasily1.2derivletedariable.frominthesevestimatesofinvthedistributionfourthtakingsection,not.anindariousthistoaneedloflotowswthtroespacepresenvierStoktationetoasbeetoessensatiallyBesoself-confortained.and1useOnathelargeblobw-uptooftempstrongaddressessoluandtquotieniolynomialsonsTheFtheorearthenormsconofveloneniencew-upofwilltheslireader,mowspaces,egrecallccounthevusualreferdenitiontheofofBesoevthespaces.theDefinitionequations.1.1bloLetsection2.1,ws.bisepapafrequencyfurespnctiontheine1.1,thatTheoremssetting.tomorethisstatemenreferifsucfhsections.thatinewWsumsolutionanistimeforatstable:ehathereconexistsergessucthehaanderedthatififsection,Thetheafterforthelotcalpsolutioniftosolution.(1s,quenceandconstructingdenenaturally)apphwhicisspace-timewhicvterms,ersistenceorderbergsglobal,andw.loewithalsowithaequationgolictparabdicationwnthosefrequencytakloncalizationinopaeratorstaretimedenedariable;beytoaforforinestimatesductionpriorithatayptoofotedindevconisofsectionNalastesandDefinitionfourthLetThestudysolution.warsthInsucfolloLetorganizedofandberebinaylostabilitwiththeectwiththedealsvsectionW.willWyeofsaTheyvthirdgeneralbtheelongtsspreciseto3.2theandandisolution,Inthe3.1ifpreviousandtheknorecallconstaneeralendix,ThetresultspartialonlyofifareprioriglobalThen3thejs
p qkuk = k2 kΔ uk ρ k ,fρ ˙s j ‘L ((a,b),L )L ((a,b),B ) xp,q
ρf s s˙ fρ ˙L (B ) = L ((0,T),B )p,q p,qT
ρ s ρ sf ˙ ˙ρ ≥ q L ((a,b),B ) ⊂ L ((a,b),B )p,q p,q
f 2 1 2 1 ∞ s ∞ s 2 s˙ ˙ g ˙ ˙ ˙L ((0,T),H ) =L ((0,T),H ) L (B )⊂L (H )⊂L (H )2,2loc loc loc
3
s = −1+ ·p
p
p q [1,∞)
p≥ 3
sp˙u Bp,q0
sp˙Bp,q
sp˙u ∈B u u0 p,q 0
?T
2 s +s p? p ?r r˙ f ˙u∈C [0,T );B ∩L B ∀r∈ [1,∞], ∀t<Tp,q p,qt
? ?T T <∞
s? p˙u6∈C [0,T ];B .p,q
?
sT =∞ lim ku(t)k p = 0˙Bp,qt→∞
2s +p rgr ˙u∈L B ∀r∈ [1,∞].p,q∞
?T
?T
3r sf ˙L B s∈ (0, )p,q p
normsaimeofustthis.sectioninis.tothenproaccordingvtoeofthallater,aswlonghasas1.2thistisolutionWisoneconothertin,uousvinactuallytimeholdwithevdefaluesInineA.1).the4eThetimewnandoin,thebloew-upblodoormseswithnotThen,ofccuer.hMorethatpreciselyose,ewandeMoreowilltheproandvresultseshallthefollofolloandwingMosttheorem.couTheoremwhen1.11.1Letnotetiandubloldeneodened.sRemarkgthestronuitcalofbeetimeaydivhergenceefreetimevtheector-eld.previousLetsamelotsbholds.eifthesloocalwstrongmsolutionnecessarilyassoaciatedetoprouniqueinasuppandshallexistsWthereintheforblosequelw-upvtime,ifi.e.inthenv,proinwdataTheinitialnoteanewithwingequationsthees.vier-Stok,Nanotablythe.considerrseofwoneifcaseatInthRemarkwndefell-knowillwwisRemarkItTheone.w-upthatdeffromiscedelldeduIndeed,etobA.2cantosconensycatimeotherthethewsinceconsider,thatmaximalereandmapapbthiscisosenmaximalbsucthehw-upthatoftheofabnodenition.vtheeasrethelarearequirementandion(see.Theoremp = 2
2
s +pr rf ˙u ∈ L B T Tp,qT
kuk 2 t =T
s +pr rf ˙L Bp,qt sp? ?˙T C [0,T );B T > Tp,q
?T <∞
sp? ˙u∈C [0,T ];Bp,q
2srg ˙u∈L B ∀r∈ [1,∞], s =s + ·? pp,qT r
1 ps > −s (⇔ r < − = )p s p−3psp? ˙C [0,T ];Bp,q
u =u +u1 2
1
sku k p ≤1 ˙Bp,q 2K1
K u1 2
skuk ≤K ku k p +K ku k s kuk +K kuk s ku kp pr s 1 0 ˙ 1 1 ∞ r s 1 ∞ 2 r sf ˙ g ˙ f ˙ g ˙ f ˙BL B p,q L B L B L B L Bp,∞ p,∞t p,q t t p,q t t p,q
K1
1
s s sku k p = supku k p ≤ supku k p ≤1 g∞ ˙ 1 ˙ 1 ˙L B B Bp,∞ p,qp,∞t 2K1[0,t] [0,t]
1
s skuk ≤K ku k p + kuk +K kuk p ku kr r ∞ rf ˙s 1 0 ˙ f ˙s 1 g ˙ 2 f ˙sL B B L B L B L Bp,q p,∞p,q p,q p,qt 2 t t t
timeinbloentimegivthisteimpliestimatoes1.1.theforapplytitwatnoalene(seeWconsidert.Pranprowcouldeossiblywwhicaswothblosmoisaseiscase).andrswcon(3)eloebof(3)happrelationesofTheoremttendconstanthethew-upiscouldwherethis(2)in,tme.tiupallexistenceformathat,5