39
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
39
pages
English
Ebook
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
36
CHAPTER1.DYNAMICSOFPARTICLESINAFLUID
NotesonMathematicalProblemsonthe
Dynamicsof
DispersedParticlesinteractingthroughaFluid
P.E.Jabin(
)andB.Perthame(
)(
)
(
)EcoleNormaleSuperieure,DMI
45,rued’Ulm
75230ParisCedex05,France
(
)INRIA-Rocquencourt,ProjetM3N
501PB78153LeChesnayCedex,France
1Introduction
InthisChapter,wepresentsomemathematicalproblemsrelatedtothedy-
namicsofparticlesinteractingthroughauid.Weareinterestedinthe
dilute
cases.Wemeanthecaseswherea
transport
PartialDierentialEquationsin
thephasespacecanbeexpectedfortheparticlesdensity.Inordertoderive
thesetransportequationsexplicitely,someassumptionsontheuiddynam-
icsarenecessary.Theylimitthevalidityofthemodelbutstillrepresents
manypossibleapplications.Namelyweassumethattheuiddynamicscan
bereducedtotwosimplesituations.Therstsituationisthesimplecaseofa
potentialow
(perfectincompressibleandirrotationalow).Thisisrelevant
todescribeforinstancethemotionofbubblesinwater(seeG.K.Batchelor
[2])andfocusesmainlyonthe
addedmass
eectwhichmeansthattoacce-
laratebubblesrequirestoacceleratesomepartofthewatertoo.Thesecond
situationisthemorestandardcaseofparticlesina
Stokesow
,forwhich
thedomainsofapplicationaresuspensionsorsedimendation.
1.INTRODUCTION
37
Thecaseofa
potentialow
aroundtheparticles,leadstoadicultyin
establishingtheequationfortheparticledensity.Amathematicalformalism
wasdevelopedbyG.RussoandP.Smereka[26]whichwewillpresenthere,
intheimprovedversionofH.Herrero,B.LucquinandB.Perthame[19].
Wewillrecallherehowonecanderive,fromtheinteractingsystemofpar-
ticles,aVlasovtypeofequationfortheparticledensityinthephasespace
g
(
t,x,p
),here
t
0isthetime,
x
∈
IR
3
representsthespacepositionand
p
∈
IR
3
representsthetotalimpulsionofparticles(dualofthevelocityinthe
Lagrangian-Hamiltonianduality).Thisequationis
∂∂t
g
+grad
p
H
grad
x
g
grad
x
H
grad
p
g
=0
,
(1.1)
H
(
t,x,p
)=
1
|
p
+(
t,x
)
|
2
,
(1.2)
2(
t,x
)=
B
(
P
+
)(
t,.
)
.
Here
B
=
B
(
x
)isagiven3
3matrix,
isthekineticparameter(relating
theradiusoftheparticlestothedensitiesoftheparticlesandoftheuid)
andthemacroscopicdensityandimplusion
,
P
aredenedby
(
t,x
)=
3
g
(
t,x,p
)
dp,
(1.3)
ZRIP
(
t,x
)=
3
pg
(
t,x,p
)
dp.
(1.4)
ZRIThedicultytoestablishthisequation,comesfromtheLagrangianaspect
ofthenaturaldynamicsfortheparticles.ItturnsoutthattheHamiltonian
variablesarebetteradaptedtomathematicalmanipulationsandtomechan-
icalinterpretation(noticethattheHamiltonianvariableisjustthetotal
impulsionofparticles).Butthederivationofthe
meaneld
equation(1.1)-
(1.3)fortheparticlesdensityiseasierinLagrangianvariables.Then,one
issueistounderstandhowtodene,inthekineticP.D.E.,theLagrangian
andHamiltonianvariables(andtounderstandalsochangeofvariables).
Thesecondsituationconsistsinconsideringa
Stokesow
aroundthepar-
ticles.Itleadstoquitedierentmathematicalissues.Inordertoestablish
equationsfortheparticledensityonecanfollowthesamederivationasbe-
fore.Fromthefulldynamicsofparticles-Nbodyinteraction-arst(and
restrictive)assumptionistomakeadipoleapproximationfortheuidequa-
tion.Thisreducesthedynamicstotwo-bodyinteractionsandthusallows
38
CHAPTER1.DYNAMICSOFPARTICLESINAFLUID
tosettlethekineticequationfortheparticledensity
f
(
t,x,v
),here
v
isthe
velocityoftheparticle.OneobtainsaVlasovtypeequation.
∂∂t
f
+
v
grad
x
f
+
div
v
((
g
+
A?
x
j
v
)
f
)=0
,
(1.5)
j
(
t,x
)=
3
vf
(
t,x,v
)
dv.
(1.6)
RIRThematrix
A
(
x
)isnowrelatedtotheStokesEquation,aswellas
B
,in
thepotentialcase,isrelatedtotheLaplaceEquation.Also,
g
denotesthe
gravityvector,
thekineticparameterand
=
43
Na
,with
N
thenumber
ofparticles,
a
theirradius.Eventhoughthereisnomathematicaldiculty
inestablishingthissystem,severalmathematicalquestionsariseconcerning,
forinstance,variousasymptoticbehaviors(largetimebehaviorcf[21],
vanishing...etc)Theyarisebecausethefrictiontermplaysamajorrolein
theparticlesdynamicsforaStokesow.Aparticularlyinterestingsituation
isthelimit
→∞
.Itgivesanexampleofa
macroscopiclimit
whichisnot
obtainedbythecollisionalprocess,butbyastrongforceterm.Inthecase
athand,itisprovedinP.E.Jabin[22]thatthemacroscopiclimitgivesrise
totheequation
∂∂t
+div(
u
)=0
,
A?
x
(
u
)
u
=
g.
((11..78))
Thetopicofthesenotesrepresentparticularexamplesofaveryactive
eldofuidmechanicswherekineticphysicsplaysafundamentalrole.Usu-
allyitisusedinthederivationofmodelsforparticularsituations,butalsoof
eectiveequationsforthemotion.Innowaywecangiveacompleteaccount
oftheliteratureinthisdomainandweprefertorefertosomegeneralworks.
Concerningbubbly-potentialows,thepaperbyY.YurkovetskyandJ.F.
Brady[32]containsnumerousrecentreferencesaswellasconsiderationson
statisticalphysicsaspectsofthemodelandtheeectofcollisisons.Forthis
eect,seealsoG.RussoandP.Smereka[27],J.F.Bourgat
etal
[6].The
derivationofpdemodelsandtheuseofkineticdescriptionisaratherrecent
subject,conferH.F.Bulthuis,A.ProsperettiandA.S.Sangani[7],A.S.San-
ganiandA.K.Didwana[28],P.Smereka[30]andthereferencestherein.On
theotherhand,thedynamicsofparticlesinaStokesowhaveleadtovery
numerousworks.Letusquotesomeofthem:G.K.BatchelorandC.S.Wen
2.DYNAMICSOFBALLSINAPOTENTIALFLOW
39
[8],F.Feuillebois[12],E.J.Hinch[16],R.HerczynskiandI.Pienkowska[20]
andthebookbyJ.HappelandH.Brenner[17].Otherregimeshavealso
beenstudiedandleadtomathematicalmodelswhichhavebeenanalyzedfor
instancebyK.Hamdache[18]forthecaseofamoregeneralincompressible
ow(andsmallparticles),byD.Benedetto,E.CagliotiandM.Pulvirenti
[3]forgranularow.Complexnumericalsimulationshavebeenperformed
byB.MauryandR.Glowinski[25],R.Glowinski,T.W.PanandJ.Periaux
[15],forhighconcentrationsofparticles(seealsothereferencestherein).
TheoutlineofthisChapterisasfollows.Thenexttwosectionsare
devotedtothecaseofapotentialow;insection2wederivethemodel
dynamicalsystemandsection3isdevotedtothemean