GIT ones and quivers
18 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

GIT ones and quivers

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
18 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Doctorat, Bac+8
GIT- ones and quivers N. Ressayre ? June 8, 2009 Abstra t In this work, we improve results of [Res07, Res08a? about GIT- ones asso iated to the a tion of a redu tive group G on a proje tive variety X . These results are applied to give a short proof of the Derksen- Weyman theorem whi h parametrizes bije tively the fa es of a rational one asso iated to any quiver without oriented y le. An important example of su h a one is the Horn one. Contents 1 Introdu tion 2 2 Well overing pairs and GIT- ones 3 2.1 Well overing pairs . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Total ones and well overing pair . . . . . . . . . . . . . . . . 4 3 Appli ation to quiver representations 8 3.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Three ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Dominant pairs . . .

  • linear group

  • let

  • lx ?t ?

  • group

  • g?-linearized line bundles

  • tion morphism

  • picg ?

  • derksen-weyman theorem


Sujets

Informations

Publié par
Nombre de lectures 23
Langue English

Extrait


G
X

N.
Ressa
yre
ers
.
.
.
June
.
8,
.
2009
quiv

.
In
pairs
this
theorem
w

ork,
.
w
.
e
.
impro
.
v
.
e
.
results
.
of
.
[Res07
ellier
,
Cedex
Res08a
.

4
ab
8
out
.

.
asso
8

.
to
.
the
.
action
9
of
.
a
.

.
e
3.4
group
.
quiv
.
on
Univ
a
t
pro
34095


e
.
v
.
ariet
.
y
Application
and
represen
.
Denitions
.
.
.
.
These
.
results
.
are
.
applied
.
to
.
giv
Three
e
.
a
.
short
.
pro
.
of
.
of
.
the
.
Derksen-
Dominan
W
.
eyman
.
theorem
.
whic
.
h
.
parametrizes
.

.
ely
Derksen-W
the
.

.
of
.
a
.
rational
15

Mon
asso
I,

Math?matiques,
to
Eug?ne
an
tp
y
F
quiv
.
er
.
without
.
orien
.
ted
.

.
An
.
imp
3
ortan
to
t
er
example
tations
of
3.1

.
h
.
a
.

.
is
.
the
.
Horn
.

.
Con
.
ten
.
ts
.
1
.
In
.
tro
.

.
2
3.2
2

W
.
ell
.

.
v
.
ering
.
pairs
.
and
.

.
3
.
2.1
.
W
.
ell
.

.
v
.
ering
3.3
pairs
t
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11
.
The
.
eyman
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.

2.2
T
ersit?
otal
tp

I
and
D?partemen
w
de
ell
Case

051-Place
v
Bataillon,
ering
Mon
pair
ellier
.
5,
.
rance.
.
1C Q = (Q ,Q )0 1
Q Q0 1
β = (β(s)) Q Rep(Q,β)s∈Q0
β
Q
GL(β) = GL(β(s)) Rep(Q,β)s∈Q0
Q0Γ GL(β) Z
Σ(Q,β) Γ⊗Q σ∈ Γ
f ∈C[Rep(Q,β)] g.f =σ(g)f
g ∈ GL(β)
Σ(Q,β)
Σ(Q,β)
Σ(Q,β)
Rep(Q,β)
group
of
of
ma
v
v
the
ey



as
of
the
space
use
ector
the
v
as
the
Res07
e
the
;
pro
it
The
is
ts
isomorphic
on
to
in
b
enligh
and
The
of
group
.
w
W
GIT
e
w

of
the
see

eyman
dimension
hnical
ector
of
v
that
a
role.
e
the
b
ts
in
w
Let
yself
ws.
of
arro
h
generated
studied
b
also
y
action
the

elemen
oin
ts
[BS00
of
in
set
the
the
quiv

to
h
v
that
o
there
not
exists
et
a
here
non
ob
zero
whic
regular
w
function
the
and
more
ertexes
fundamen
v

of
pla
set
w
the
that
is
v
Here,
acts

the
ted
t.
orien
v
without
for
er
see

represen
h
v
that
phenomenons
quiv
not
a
the
e
[Res07,
b

Let
e
ers.
for
b
the
um
a
n

for
This
an
of
y
used

BK06
of

eld
literature
the
h
er
problem
v
from
o
one,
.
in
It
w
is
are
a
useful

t
v
hes.
ex
b
p
easy
olyhedral
dierences

een
In
presen
[D
the
W00,
The
D
one
W06],
text
Derksen-
the
W
of
eyman
is
sho
guess
w

ed
mak
that
the
the
A
Horn
dierence

and

p
b
the
e
a
obtained
v
in
do

the
h
base
a
of
w
t
a
on
y
group
from

w
impro
ell
emen

It
hosen
as
quiv
ery
er
teresting
and
m
v
to
ector
that
dimension.
example
This
tations
is
dimension
an
ector
imp
tens
ortan
whic
t
did
motiv
o
ation
in
to
example
the
in
study

ork
Horn
w

e
b
W
obtained


tro
the
.
of
Here,
linear
w
on
e
pro
use
of
general
ag
metho
arieties.
ds
p
of
t

view
In
as
v
in
arian
,
t
,
Theory
,
to
Whereas,
giv
the
e
this
a

pro
of
of
Horn
of
w
the

Derksen-W
the
eyman
er
theorem
this
(see
ork
[D
tends
W06
sho

that
whic

h
a
parametrizes
ery

generalization
ely
these
the
w


of
It
In
y
as
e

so
e
to
W
the
.
b
.
w
In
the

of
2,
ted
w
and
e
Derksen-W
impro
one.
v
most
e
vious
results
is
of

[Res07
in

h
ab

out
part

the
in
ork
general.
made.
In
author
particular,
that
Theorem
general
1
text
is
GIT
an
es
impro

v
k
emen
argues.
t
most
of
tal
[Res07,
is
Theorem
here
4],
in
and
the
Theorem
oin
2
outside
of

[Res07,
y
Theorem

7].
Moreo
After
er,

e
h
not
statemen
here
t

the
a
the
of
kno
space
The
semiin
ulton
arian
ab
functions
the
.
o
naturally

The

w
e
is
ha
wn.
v
F
e


out
a
Littlew
remark
o
to
hardson
mak

e
is
1
2ν Nνc = 1⇒c = 1 ∀N ≥ 1.λμ NλNμ
α◦β = 1 ⇒ α◦ (Nβ) = 1
G
λX λ G G
λ G P(λ) λ
λG
n o
−1P(λ) = g∈G : limλ(t).g.λ(t) G .
t→0
λC X λ X
+C C
+C ={x∈X | limλ(t)x∈C}.
t→0
λ +C G C P(λ)
+G× C G× P(λ)
′ ′ −1(g,p).(g ,y) = (gg p ,py)
+ +G× C G×C {e}×P(λ)P(λ)
+ +(g,y)∈G×C G× C [g :y]P(λ)
+G×{e} G G× CP(λ)
+G×C −→G G π : G×P(λ)
+ +C −→ G/P(λ) C
G
+η : G× C −→X, [g :y] →gy.P(λ)
(C,λ) η (C,λ)
η
X C
and
of
action
3
pair

the
that
tersecting
on
.
2
action
also
of
pair
y
ws
b
W
stable

is
allo
.
bration
Consider
used.
o
W06
v
to
er
to
Then,
op
:
ering
to
er,

pairs
the
arian
action
v
of
d
asso
a

Theorem
ki-Birula
arian
Bia?ynic
this
the


v
giv
.
en
if
b
generalization
y
l
the
o
form
of
ula
Let
(with

ob
Moreo
vious
rst
notation):

also
v
e
ell
W
map
.
this
in
to
of
in
set
the
t
h
oin

p
b
xed
.
the

of
map
t
is
onen
er.



and
an
in
e
Denition.
b
generalization
Let
is
in
e
exists
is.
:
quiv
.
is
Consider
e
the
overing
quotien
an
t
er
sub

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents