Niveau: Supérieur, Doctorat, Bac+8
Local Aronson–Benilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds Peng Lu Department of Mathematics, University of Oregon, Eugene, OR 97403, USA Lei Ni Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA Juan-Luis Vazquez Departamento de Matematicas, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain Cedric Villani Institut Universitaire de France and Unite de Mathematiques Pures et Appliquees, Ecole Normale Superieure de Lyon, 46 allee d'Italie, F-69364 Lyon Cedex 07, France Abstract In this work we derive local gradient and Laplacian estimates of the Aronson– Benilan and Li–Yau type for positive solutions of porous medium equations posed on Riemannian manifolds with a lower Ricci curvature bound. We also prove similar results for some fast diffusion equations. Inspired by Perelman's work we discover some new entropy formulae for these equations. Dans cet article nous etablissons des bornes locales a la Aronson–Benilan sur le gradient et le laplacien de la pression, pour des solutions positives d'equations des milieux poreux sur des varietes riemanniennes a courbure de Ricci minoree. Nous obtenons des resultats similaires pour certaines equations de diffusion rapide. Inspires par le travail de Perelman, nous mettons en evidence de nouvelles formules d'entropie pour ces equations. Key words: Porous medium equation, fast diffusion equation, Aronson–Benilan estimate, Li–Yau type estimate, local gradient bound, flow on manifold, entropy formula Preprint submitted to J.
- courbure de ricci minoree
- equations
- estimates below
- ricci curvature
- ?2 ?2
- bounded below
- diffusion equation
- local estimate
- solutions positives d'equations des milieux poreux