ON A CHARACTERIZATION OF FINITE BLASCHKE PRODUCTS

icon

10

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

10

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Doctorat, Bac+8
ON A CHARACTERIZATION OF FINITE BLASCHKE PRODUCTS EMMANUEL FRICAIN, JAVAD MASHREGHI Abstract. We study the convergence of a sequence of finite Blaschke products of a fix order toward a rotation. This would enable us to get a better picture of a characterization theorem for finite Blaschke products. 1. Introduction Let (zk)1≤k≤n be a finite sequence in the open unit disc D. Then the rational function B(z) = ? n∏ k=1 zk ? z 1? z¯k z , where ? is a unimodular constant, is called a finite Blaschke product of order n for D [8]. There are various results characterizing these functions. For example, one of the oldest ones is due to Fatou. Theorem A (Fatou [5]). Let f be analytic in the open unit disc D and suppose that lim |z|?1 |f(z)| = 1. Then f is a finite Blaschke product. For an analytic function f : ?1 ?? ?2, the number of solutions of the equation f(z) = w, (z ? ?1, w ? ?2), counting multiplicities, is called the valence of f at w and is denoted by vf (w). It is well-known that a finite Blaschke product of order n has the constant valence n for each w ? D.

  • hyperbolic convex

  • ?? ?0 ?

  • ei? ?

  • all hyperbolic convex

  • let z1

  • b?

  • ?1 ??

  • convex hull


Voir icon arrow

Publié par

Nombre de lectures

51

Langue

English

ON A CHARACTERIZATION OF FINITE BLASCHKE PRODUCTS
EMMANUEL FRICAIN, JAVAD MASHREGHI
Abstract.We study the convergence of a sequence of finite Blaschke products of a fix order toward a rotation. This would enable us to get a better picture of a characterization theorem for finite Blaschke products.
1.Introduction Let (zk)1knbe a finite sequence in the open unit discDthe rational. Then function n Y zkz B(z) =γ , 1z¯kz k=1 whereγis a unimodular constant, is called a finite Blaschke product of ordernfor D[8]. There For example, one ofare various results characterizing these functions. the oldest ones is due to Fatou.
Theorem A(Fatou [5]).Letfbe analytic in the open unit discDand suppose that lim|f(z)|= 1. |z|→1 Thenfis a finite Blaschke product.
For an analytic functionf: Ω1−→Ω2, the number of solutions of the equation f(z) =w,(zΩ1, wΩ2), counting multiplicities, is called thevalenceoffatwand is denoted byvf(w). It is well-known that a finite Blaschke product of ordernhas the constant valencen for eachwD. But, this property in fact characterizes finite Blaschke products of ordern.
2000Mathematics Subject Classification.Secondary: 32A70.Primary: 30D50, Key words and phrases.Blaschke products, zero sets, convergence, automorphism. This work was supported by NSERC (Canada), Jacques Cartier Center and ANR project FRAB (France). 1
Voir icon more
Alternate Text