Corrigé bac ES 2014 Pondichéry maths spécialité
5 pages
Français

Corrigé bac ES 2014 Pondichéry maths spécialité

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
5 pages
Français
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

BAC ES Pondichéry Avril 2014 Spécialité Exercice 1 : 1. h'1 est le coefficient directeur de la tangente T au point A d’abscisse -1.   La tangente passe par les points A et B. yB  yA 2  3 5 Donc h ' 1     5  2   xB  xA 0  1 1  La proposition est donc fausse. 2. D’après le graphique, le signe de fx'' est :   x 0 1 4 f ’’ ( x ) 0 La fonction f est donc convexe sur [0 ;1] et concave sur [1 ; 4]. La proposition est donc fausse. 57 75ln 2 7ln 4 ln 2 ln 4 5 7 5 2 5 14 5 14 193. e e  e e  2 4  2  2  2 2  2  2   5 7 7ln 2 ln 4 5 7 5 2 5 14 5 14 19OU ee   2 4  2  2  2 2  2  2       Les propriétés utilisées sont : nnln x  ln x pour x réel strictement positif et n entier naturel yx y xe  e pour x et y réels   ln xe  x pour x réel strictement positif La proposition est donc vraie. 22 4. L’aire de la partie grisée en u.a est g x dx G x  G 2  G 1  5 1  4          1 1 La proposition est donc vraie. Exercice 2 : Partie A : 1. 2. v 1  0,45  0,550 u et vPour calculer : 11 Soit on utilise la matrice de transition. Soit la matrice correspondant à l’état probabiliste l’année ( 2013 + n) P  u v n n n Soit M la matrice de transition.

Sujets

Informations

Publié par
Publié le 15 avril 2014
Nombre de lectures 76
Langue Français

Exrait

BAC ES Pondichéry Avril 2014Spécialité Exercice 1 : 1.est le coefficient directeurde la tangente T au point A d’abscisse1. La tangente passe par les points A et B. Donc La proposition est donc fausse. 2. D’après le graphique, le signe deest : x 01 4 f’’(x) 0 La fonction f est donc convexe sur [0 ;1] et concave sur [1 ; 4]. La proposition est donc fausse. 3. OU Les propriétés utilisées sont :
La propositionest donc vraie.
4. L’aire de la partie grisée en u.a est
La proposition est donc vraie. Exercice 2 : Partie A : 1. 2. Pour calculer: Soit on utilise la matrice de transition. Soitla matrice correspondant à l’état probabiliste l’année ( 2013 +n) Soit M la matrice de transition.
On en déduit que Soit on utilise directementl’énoncé :
3. Dans l’algorithmeL5 : Affecter à V la valeur 0,55 L8 : Affecter à V la valeur 1U Remarque : on a aussi car
Donc dans la ligne L8 del’algorithme, on peut aussi compléter : L8 : Affecter à V la valeur 0,1U+0,85V 4. On admet que
On pose. On a donc. a) b) estune suite géométrique de raison 0,75.donc la limite de la suiteest 0. donc la limite de la suiteest 0,6. A long terme ( aud’un grand nombre d’années ), la société U aura 60% du marché des fontaines d’eau àbout bonbonnes.
Partie B : 1. On admet que le triplet
1. a)
b)
est solution du système :
2. On en déduit que Le coût pour 8000 recharges d’eau produites est 292,4 centaines d’euros soit 29240 €Exercice 3 : Partie A : 1. 2. D’après la formule des probabilités totales:
3. Partie B : 1. On sait que : Or
Donc 2. On utilise l’approximationD’après la calculatrice,Partie C : La mutuelle affirme que la proportion des personnes ayant comptabilisé plus de 20 jours d’absence estL’intervalle de fluctuationasymptotique au niveau de confiance 0,95, étudiée en terminale, de la fréquence des personnes ayant comptabilisé plus de 20 jours d’absence dans l’échantillonde taillen = 200est :
Remarque : les conditionssont remplies. La fréquence observéedes personnes ayant comptabilisé plus de 20 jours d’absence dans l’échantillonde taille 200 est : doncon rejette l’affirmation de la mutuelle au seuil de risque 5%.Exercice 4 : Partie A : 1.
a)le prix de vente d’une centaine de litre de sorbet est 10 centaines d’euros soit 1000 €.b)car la droite D est une droite de coefficient directeur 10 qui passe par l’origine.c) pour que l’entreprise dégage un bénéfice, la recette doit être supérieur au coût. Il faut donc produire au minimum 1 centaine de litres c'estàdire 100 litres. 2. On admet que a)
b) La valeur moyenne est donc 13,896centaines d’euros soit 1390Partie B : 1.
On utilise la formule
2. a) La fonction B’ est continue et strictement décroissante sur [1; 3]. 0 est une valeur intermédiaire entre 8,03 et 10. Donc d’après le théorème des valeurs intermédiaires, l’équationadmet une unique solutionαdans l’intervalle [1; 3]. D’après la calculatrice,b) x 1α 3 B’(x)0  + B(x) 8,43 0 5,92 3. Ce n’est pas envisageable car le maximum de la fonction B est 8,43. Le bénéfice maximum est donc 843 €.
  • Accueil Accueil
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • BD BD
  • Documents Documents