TRACE THEOREM ON THE HEISENBERG GROUP

icon

18

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

18

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

TRACE THEOREM ON THE HEISENBERG GROUP HAJER BAHOURI, JEAN-YVES CHEMIN, AND CHAO-JIANG XU Abstract : We prove in this work the trace and trace lifting theorem for Sobolev spaces on the Heisenberg groups for hypersurfaces with characteristics submanifolds. Resume : Dans ce travail, nous demontrons des theoremes de trace et de relevement pour les espaces de Sobolev sur le groupe de Heisenberg pour des hypersurfaces dont l'ensemble caracteristique est une sous-variete. Key words Trace and trace lifting, Heisenberg group, Hormander condition, Hardy's inequality A.M.S. Classification 35 A, 35 H, 35 S. 1. Introduction In this work, we proceed with the study of the problem of restriction of functions that belongs to Sobolev spaces associated to left invariant vector fields for the Heisenberg groupHd. We shall assume that d ≥ 2. Let us recall that the Heisenberg group is the space R2d+1 of the (non commutative) law of product w · w? = (x, y, s) · (s?, x?, y?) = ( x+ x?, y + y?, s+ s? + (y|x?)? (y?|x) ) . The left invariant vector fields are Xj = ∂xj + yj∂s, Yj = ∂yj ? xj∂s, j = 1, · · · , d and S = ∂s = 1 2 [Yj , Xj ].

  • trace lifting

  • defining function

  • zj ·

  • l2 ≤

  • theoremes de trace et de relevement pour les espaces de sobolev

  • hardy inequality

  • now let

  • exists such


Voir icon arrow

Publié par

Nombre de lectures

9

Langue

English

TRACE THEOREM ON THE HEISENBERG GROUP
HAJER BAHOURI, JEAN-YVES CHEMIN, AND CHAO-JIANG XU
Abstract : We prove in this work the trace and trace lifting theorem for Sobolev spaces on the Heisenberg groups for hypersurfaces with characteristics submanifolds. Re´sume´: Danscetravail,nousd´emontronsdesthe´ore`mesdetraceetderele`vementpour les espaces de Sobolev sur le groupe de Heisenberg pour des hypersurfaces dont l’ensemble caracte´ristiqueestunesous-vari´et´e. Key words Traceandtracelifting,Heisenberggroup,Ho¨rmandercondition,Hardys inequality A.M.S. Classification 35 A, 35 H, 35 S. 1. Introduction In this work, we proceed with the study of the problem of restriction of functions that belongs to Sobolev spaces associated to left invariant vector fields for the Heisenberg group H d . We shall assume that d 2. Let us recall that the Heisenberg group is the space R 2 d +1 of the (non commutative) law of product w w 0 = ( x, y, s ) ( s 0 , x 0 , y 0 ) = x + x , y + y 0 , s + s 0 + ( y | x 0 ) ( y 0 | x ) . 0 The left invariant vector fields are X j = x j + y j s , Y j = y j x j s , j = 1 , ∙ ∙ ∙ , d and S = s =12[ Y j , X j ] . In all that follows, we shall denote by Z this family and state Z j = X j and Z j + d = Y j for j in { 1 , ∙ ∙ ∙ , d } . Moreover, for any C 1 function f , we shall state r H f d = ef ( Z 1 f, ∙ ∙ ∙ , Z 2 d f ) . The key point is that Z satisfies H¨ ander’s condition at order 2, which means that the orm family ( Z 1 , ∙ ∙ ∙ , Z 2 d , [ Z 1 , Z d +1 ]) spans the whole tangent space T R 2 d +1 . For k N and V an open subset of H d , we define the associated Sobolev space as following H k ( H d , V ) = n f L 2 ( R 2 d +1 ) / Supp f V and α / | α | ≤ k , Z α f L 2 ( R 2 d +1 ) o , where if α ∈ { 1 , ∙ ∙ ∙ , 2 d } k 0 , | α | d = ef k 0 and Z α d = ef Z ∙ ∙ ∙ Z α k 0 . As in the classical case, when α 1 s is any real number, we can define the function space H s ( H d ) through duality and complex interpolation,Littlewood-PaleytheoryontheHeisenberggroup(see[1]),orWeyl-Ho¨rmander calculus (see [8], [10] and [11]). It turns out that these spaces have properties which look very much like the ones of usual Sobolev spaces, see [4] and their references.
Date : 24/09/2005.
1
Voir icon more
Alternate Text