CRYPTOSS [Computer Science]
25 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

CRYPTOSS [Computer Science]

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
25 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

  • exposé
Contact: Akash Budhia: +91 8971564302 Sakshi Verma: +91 9535617256 EMAIL: CRYPTOSS [Computer Science] Encrypt-Decrypt: Analyze the encryption algorithm of given paragraph and write a code to implement deciphering the same. No Man's Land: Program in an unfamiliar language and environment whose basic documentation is given. App Whiz: Create a Facebook App/Twitter App/Firefox Add-on/Chrome Extension based on the theme released a week before the event.
  • air plane crash with help of videos
  • maximum humidity from atmospheric air
  • virtual market
  • real business simulation
  • innovative circuit with an optimal functionality from the components
  • red strip at tracks end
  • use of various equipments
  • hunt for dismantled components of a device

Sujets

Informations

Publié par
Nombre de lectures 26
Langue English

Extrait

Contents
Kira Adaricheva
Equaclosure operators on nite lattices . . . . . . . . . . . . . . . . 1
Grigore Dumitru C alug areanu
Abelian groups determined by the subgroup lattice of direct powers . 1
Miguel Campercholi
Axiomatizability by sentences of the form 89!^ p = q . . . . . . . . 1
Nathalie Caspard
Semilattices of nite Moore families . . . . . . . . . . . . . . . . . . 2
Ivan Chajda
Orthomodular semilattices . . . . . . . . . . . . . . . . . . . . . . . 3
Miguel Couceiro
On the lattice of equational classes of operations and its monoidal
intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Brian Davey
Rank is not rank! . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Klaus Denecke
T-clones and T-hyperidentities . . . . . . . . . . . . . . . . . . . . 5
Stephan Foldes
On discrete convexity and ordered sets . . . . . . . . . . . . . . . . 6
Ralph Freese
Computing the tame congruence theory type set of an algebra . . . . 7
Ervin Fried
Relations between lattice-properties . . . . . . . . . . . . . . . . . . 7
Ewa Wanda Graczynsk a
Fluid varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Radom r Halas
Weakly standard BCC-algebras . . . . . . . . . . . . . . . . . . . . 9
Miroslav Haviar
Congruence preserving functions on distributive lattices I . . . . . . 9
G abor Horv ath
The * problem for nite groups . . . . . . . . . . . . . . . . . . . . 10
Kalle Kaarli
Arithmetical a ne complete varieties and inverse monoids . . . . . 10
Mario Kapl
Interpolation in modules over simple rings . . . . . . . . . . . . . . 11
Keith A. Kearnes
Abelian relatively modular quasivarieties . . . . . . . . . . . . . . . 12
Emil W. Kiss
Mal’tsev conditions and centrality . . . . . . . . . . . . . . . . . . . 12
iOndrej Kl ma
Complexity of checking identities in monoids of transformations . . 12
Samuel Kopamu
On certain sublattices of the lattice of all varieties of semigroups . . 13
J org Koppitz
Non-deterministic hypersubstitutions . . . . . . . . . . . . . . . . . 13
Erkko Lehtonen
Hypergraph homomorphisms and compositions of Boolean functions
with clique functions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Hajime Machida
Centralizers of monoids containing the symmetric group . . . . . . 15
Hua Mao
Geometric lattices and the connectivity of matroids of arbitrary car-
dinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Peter Mayr
Clones containing the polynomial functions
on groups of order pq . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Ralph McKenzie
Finite basis problems for quasivarieties, and the weak extension
property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Todd Niven
When is an algebra, which is not strongly dualisable, not fully du-
alisable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Peter P. P alfy
Hereditary congruence lattices . . . . . . . . . . . . . . . . . . . . . 16
Michael Pinsker
Complicated ternary boolean operations . . . . . . . . . . . . . . . . 17
Alexandr Pinus
On the subsemilattices of formular subalgebras and congruences of
the lattices of subalgebras and congruences of universal algebras . . 17
Miroslav Ploscica
Congruence preserving functions on distributive lattices II . . . . . 18
S andor Radeleczki
On congruences of algebras de ne d on sectionally pseudocomple-
mented lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Ivo G. Rosenberg
Commuting operations and centralizing clones . . . . . . . . . . . . 19
Luigi Santocanale
Lattices of paths in higher dimension . . . . . . . . . . . . . . . . . 19
Pedro S anchez Terraf
Varieties with de nable factor congruences and BFC . . . . . . . . 20

Jir Tuma
Congruence lattices of algebras with permuting congruences . . . . . 20
Matt Valeriote
An intersection property of subalgebras in congruence distributive
varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Vera Vertesi
Checking identities in algebras . . . . . . . . . . . . . . . . . . . . . 21
iiFriedrich Wehrung
Recent results on the dimension theory of lattice-related structures . 21
Ross Willard
The full implies strong problem for commutative rings . . . . . . . . 22
iiiEquaclosure operators on nite lattices
Kira Adaricheva
Harold Washington College, USA
We investigate approaches to the solution of Birkho -Mal’cev problem about the de-
scription of ( nite) lattices of quasivarieties. All known nite lattices of quasivarieties are
lower bounded. Also, every lattice of quasivarieties admits a so-called equaclosure oper-
ator. We work toward description of lower bounded lattices that admit an equaclosure
operator. In particular, we build an algorithm that works for any nite lattice and either
decides that the lattice does not admit an equaclosure operator, or generates the minimal
equaclosure operator on it.
Joint work with J. B. Nation (University of Hawaii).
kadaricheva@ccc.edu
Abelian groups determined by the subgroup lattice of direct
powers
Grigore Dumitru C alug areanu
Kuwait University, Kuwait
We show that the class of abelian groups determined by the subgroup lattices of their
direct squares is exactly the class of the abelian groups which share the square root
property. As application we answer in the negative a (semi)conjecture of Palfy and solve
a more general problem.
calu@sci.kuniv.edu.kw
Axiomatizability by sentences of the form 89!^ p = q
Miguel Campercholi
Universidad Nacional de C ordoba, Argentina
Given an equational class V, several important subclasses of V can be de ned by
sentences of the form 89!^ p = q. For example, if V is the class of all semigroups with
unit, then the subclass of all groups can be de ned in this way, and ifV is the class of all
bounded distributive lattices, then the subclass of all Boolean lattices is also axiomatizable
in this way. We consider the following general problem:
Problem: Given a varietyV characterize the subclasses ofV which can be axiomatized
by a set of sentences of the form89!^ p = q.
We will present a solution to this problem for certain varieties of distributive lattice
expansions. Joint work with Diego Vaggione.
mcampercholi@yahoo.com
1Semilattices of nite Moore families
Nathalie Caspard
Universite Paris 12, France
Moore families (also called closure systems) are set representations for lattices. For
instance, the Moore families called convex geometriest lower locally distributive
lattices (they are also in duality with the path-independent choice functions of the con-
sumer theory in microeconomics). We present a review of a number of works on some
sets of Moore families de ned on a nite set S which, ordered by set inclusion, are semi-
lattices or lattices. In particular, we study the lattice M (respectively, the semilatticeP
G ) of all Moore families (respectively, convex geometries) having the same poset P ofP
join-irreducible elements. For instance, we determine how one goes from a family F in
these lattices (or semilattices) to another one covered byF and also the changes induced
in the irreducible elements of F. In the case of convex geometries, this allows us to get
an algorithm computing all the elements ofG . At last, we characterize the posets P forP
which jM j orjG j is less than or equal to 2.P P
Common work with Gabriela Hauser Bordalo Universidade de Lisboa, Portugal).
References
[1] K.V. Adaricheva, Characterization of nite lattices of sublattices (in Russian), Al-
gebra i logica 30, 1991, 385{404.
[2] G. Bordalo and B. Monjardet, The lattice of strict completions of a nite lattice,
Algebra Universalis 47, 2002, 183{200.
[3] G. Bordalo and B. Monjardet, Finite orders and their minimal strict completions
lattices, Discussiones Mathematicae, General Algebra and Applications 23, 2003,
85{100.
[4] N. Caspard and B. Monjardet, The lattice of closure systems, closure operators
and implicational systems on a nite set: a survey, Discrete Applied Mathematics
127(2), 2003, 241{269.
[5] N. Caspard and B. Monjardet, The lattice of convex geometries, in M. Nadif, A.
Napoli, E. SanJuan, A. Sigayret, Fourth International Conference \Journes de
l’informatique Messine", Knowledge Discovery and Discrete Mathematics, Rocquen-
court, INRIA, 2003, 105{113.
[6] N. Caspard and B. Monjardet, Some lattices of closure systems, Discrete Mathe-
matics and Theoretical Computer Science 6, 2004, 163{190.
[7] M.R. Johnson and R.A. Dean, Locally Complete Path Independent Choice functions
and Their Lattices, Mathematical Social Sciences 42(1), 2001, 53{87.
[8] B. Monjardet and V. Raderanirina, The duality between the anti-exchange closure
operators and the path independent choice operators on a nite set, Mathematical
Social Sciences 41(2), 2001, 131{150.
2[9] J.B.Nation and A. Pogel, The lattice of completions of an ordered set, Order 14(1),
1997, 1{7.
[10] B. Seselja and A. Tepavcevic, Collection of nite lattices generated by a poset, Order
17, 2000, 129{139.
ncaspard@yahoo.fr
Orthomodular semilattices
Ivan Chajda
Palacky University, Czech Republic
A semilattice S = (S;^;0) with the least element 0 is cal

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents