//img.uscri.be/pth/ea525415291dbf77e05793239909d104b2c2b583
Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 116,04 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

The Fast Solution of Boundary Integral Equations

De

Boundary Element Methods (BEM) play an important role in modern numerical computations in the applied and engineering sciences. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations.


The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation.


The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations.


Voir plus Voir moins
Contents
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
2
Boundary Integral Equations. . . . . . . . . . . . . . . . . . . . . . . . Laplace Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Interior Dirichlet Boundary Value Problem . . . . . 1.1.2 Interior Neumann Boundary Value Problem . . . . 1.1.3 Mixed Boundary Value Problem . . . . . . . . . . . . . . . 1.1.4 Robin Boundary Value Problem . . . . . . . . . . . . . . . 1.1.5 Exterior Dirichlet Boundary Value Problem . . . . . 1.1.6 Exterior Neumann Boundary Value Problem . . . . 1.1.7 Poisson Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.8 Interface Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . Lamé Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Dirichlet Boundary Value Problem . . . . . . . . . . . . 1.2.2 Neumann Boundary Value Problem . . . . . . . . . . . . 1.2.3 Mixed Boundary Value Problem . . . . . . . . . . . . . . . Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Interior Dirichlet Boundary Value Problem . . . . . 1.4.2 Interior Neumann Boundary Value Problem . . . . 1.4.3 Exterior Dirichlet Boundary Value Problem . . . . . 1.4.4 Exterior Neumann Boundary Value Problem . . . . Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 1.2 1.3 1.4 1.5
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
Boundary Element Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Boundary Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Laplace Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Interior Dirichlet Boundary Value Problem . . . . . . . . . . . 2.3.2 Interior Neumann Boundary Value Problem . . . . . . . . . . 2.3.3 Mixed Boundary Value Problem . . . . . . . . . . . . . . . . . . . . .
V
1 2 10 13 17 19 21 22 24 26 27 35 36 37 40 44 49 50 52 54 56
59 59 61 65 65 72 77
X
3
4
Contents
2.4 2.5
2.6
2.3.4 Interface Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lame Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Interior Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Interior Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 Exterior Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.4 Exterior Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84 87 91 91 93 97 98 99
Approximation of Boundary Element Matrices. . . . . . . . . . . . 101 3.1 Hierarchical Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.1.2 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.2 Block Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.2.1 Analytic Form of Adaptive Cross Approximation . . . . . . 112 3.2.2 Algebraic Form of Adaptive Cross Approximation . . . . . 119 3.3 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.1 4.2 4.3 4.4
Implementation and Numerical Examples. . . . . . . . . . . . . . . . . . 131 Geometry Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.1.1 Unit Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.1.2 TEAM Problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.1.3 TEAM Problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.1.4 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.1.5 Exhaust manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Laplace Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.2.1 Analytical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.2.2 Discretisation, Approximation and Iterative Solution . . . 137 4.2.3 Generation of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.2.4 Interior Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.2.5 Interior Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.2.6 Interior Mixed Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.2.7 Inhomogeneous Interface Problem . . . . . . . . . . . . . . . . . . . 160 Linear Elastostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.3.1 Generation of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.3.2 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.3.3 Foam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.4.1 Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.4.2 Discretisation, Approximation and Iterative Solution . . . 169 4.4.3 Generation of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.4.4 Interior Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4.4.5 Interior Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . 185 4.4.6 Exterior Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . 191 4.4.7 Exterior Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . 196
A
B
C
Contents
XI
Mathematical Foundations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.1 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.2 Fundamental Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 A.2.1 Laplace Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 A.2.2 Lame System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 A.2.3 Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 A.2.4 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 A.3 Mapping Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Numerical Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225. . . . . . . B.1 Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 B.2 Approximation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Numerical Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 C.1 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 C.2 Analytic Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 C.2.1 Single Layer Potential for the Laplace operator . . . . . . . . 246 C.2.2 Double Layer Potential for the Laplace operator . . . . . . . 249 C.2.3 Linear Elasticity Single Layer Potential . . . . . . . . . . . . . . 252 C.3 Iterative Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 C.3.1 Conjugate Gradient Method (CG) . . . . . . . . . . . . . . . . . . . 256 C.3.2 Generalised Minimal Residual Method (GMRES) . . . . . . 263
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269. . . . . . . . . . . . . . . . . . .
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
http://www.springer.com/978-0-387-34041-8