University of Illinois at Urbana Champaign Fall
9 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

University of Illinois at Urbana Champaign Fall

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
9 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

University of Illinois at Urbana-Champaign Fall 2006 Math 380 Group G1 Final Exam. Friday, December 15. Correction Key. You are allowed to use your textbook, but no other kind of documentation. Calculators, mobile phones and other electronic devices are prohibited. NAME SIGNATURE

  • urbana-champaign fall

  • using ?

  • let now ?

  • coordinates

  • e?

  • mobile phone

  • ∂f ∂x


Sujets

Informations

Publié par
Nombre de lectures 13
Langue English

Extrait

UniversityofIllinoismobilebutadevictyourUrbana-ChampofaignotherFprall2006oMathother380cumentation.GroupnesG1ctrFinalarExam.d.FSIGNAridauseytextb,ok,Decemnobkinderdo15.Calculators,CorrectionphoKeyand.eleYonicouesareeohibitealNAMElowedTUREto1.
2f:R →R g:R→R

2g(x) = f x+1,ln(1+x ) .
0g g (x)
f
g
∂f 2x ∂f0 2 2g (x) = 1. x+1,ln(1+x ) + x+1,ln(1+x ) .
2∂x 1+x ∂y
(theformulaeDeneLetinhentinshouldgivinwhvyolvaeulathe(20partialusderivisativulaesgivoffunctioneiv).partialAnswaer.eTheoinfunctionRuleresisthatdierenditiableybExplainecauseformittiseabcoampes.ositionttiablederivwithuousandconoforfunofdnformierenctitiableafunctionsb;ts)thepChainquestion2.
(r,θ) (x,y) x = rcos(θ)
θy = rsin(θ) γ r(θ) = e 0≤ θ≤ 1
γ
γ
(θ x(θ) = r(θ)cos(θ) = e θ)cos(θ)) y(θ) = r(θ)sin(θ) =
θe sin(θ) 0≤ θ≤ 1 p
0 θ 0 θ0 2 0 2ds = (x (θ)) +(y (θ)) dθ x (θ) = e (cos(θ)−sin(θ)) y (θ) = e (sin(θ)+cos(θ)
0 2 0 2 2θ 2 2 2θ(x (θ)) + (y (θ)) = e (2cos (θ) + 2sin (θ)) = 2e
Z 1 √ √
θ2e dθ = 2(e−1) .
θ=0
ve.forComputethatthatAnswwinknoeeordinates)Wlength(b)cartesian.tegral,Wlengtha;(20thepaoin(a)ts)bRecallhthatordinates.pPlugging,iolarecohordinatestheareinlinkfored(a)toulacartesianparameter,coasordinatesUsing;er.b.yoftheeformtulas(b).coTh.usthis,the.nLetwnoobtainwtbeeofacurvcurviseyeparameterized(inparametrizationpFindolar.coformobtains,oneha3.
Z 1
t 0x≥ 0 F(x) = ln(1+xe )dt F (x)
0
Z Z x1 1 t ∂ e 1 10 t tF (x) = (ln(1+xe ))dt = dt = ln(1+xe ) = ln(1+xe)−ln(1+x) .
t∂x 1+xe x x0 0 t=0
hastegral.aninAnswtheininsideauousderivfunctioninobtainolvedotheforecauseeb,doer.cantegral.elwehv(whicesn'trulethatconwFexpressionoinan(20Gives),setativorLeibnitz'sts)Usingppartitin4.
2t+3 2γ x(t) = 1+sin(2πt)e y(t) = ln(1+8t) z(t) = t +4t+4 0≤ t≤ 1
γ t
Z
2 y√ √ x e2 y 2 y(3x +2x ze )dx+(2y +x ze )dy +( √ )dz .
2 zγ
Z

3 2 y 2f(x,y,z) = x +x ze +y df
γ
γ (x(1),y(1),z(1)) = (1,ln(9),9) (x(0),y(0),z(0)) = (1,0,4)
Z 2 y√ √ x e2 y 2 yI = (3x +2x ze )dx+(2y +x ze +1)dy +( √ )dz = f(1,ln(9),9)−f(1,0,4) .
2 zγ
ln(9) 2 2 2I = 1+3e +(ln(9)) −(1+2+0) = 1+27+4(ln(3)) −3 = 25+4(ln(3)) .
andcomputeunbsome.bThIndeed,usew,epathobtainline;enincreasingmofuglydirection,thepints)tedtheareer.hnwhicin,norienbofthatssotelievoinloend-p,the,onyendsoindepparameterizedonlyLetiteusAnswThThis.iislettingAssumethere..dence(20deptopath-iequaleisusttegralthereinguesslinewthe,thatablyseebeokswtegral5.
2 2 2S x +y = z 0≤ z≤ H
ZZ
2 2(1−z )y dσ
S
2 2 2x +y ≤ H z = H
Z Z Z1 2π 1 2π(1−H )2 2 2 2 3I = (1−H )r sin (θ)rdθdr = (1−H )π r dr = .
4r=0 θ=0 r=0
x = zcos(θ) y = zsin(θ) z = z
5
 
−zcos(θ)
∂P ∂P
 −zsin(θ)× = .
∂z ∂θ
z
√ √
z 2 dσ = z 2dθdz
Z Z ZH 2π H 4 6√ √ √ H H2 2 2 3 5I = (1−z )z sin (θ)z 2dθdz = π 2 (z −z )dz = π 2 − .
4 6z=0 θ=0 z=0
2 4 6√ π(1−H ) H H
+π 2 − .
4 4 6
tobtainedresultpsurfacestheOnuseecanoewwaso(view,theexerciseofintheneopati.zearametriequalThetomagnitudets)ofoptsurfacehtheinscov.ectorhaisthehtthisAnswusedsurface,erall,sothatalreadytegraleasvequationhacoeLetWp.On.TTheiformtheulatopfornsurfacetegralinitegralsordinates,golariUsingv,esvthatethesurfaceinoftegraloonthetheer.sideComputeof)theclosedsurfacOvewisget,theSidein,isparametrizationtotheeduse,canofenewthesurface,bereget(25oinsidetheofp6. 
x +2x +3x +10x = 01 2 3 4
24x +5x +6x +x = 01 2 3 4 37x +8x +9x +x = 01 2 3 4
0 0x ,x ,x x (0,0,0,0) x (0) x (0)1 2 4 3 1 2
0x (0)4
x ,x ,x x (0,0,0,0)1 2 4 3 
1 2 10
 4 5 0 0
7 8 0
10.(4.8−7.5) =−30 x ,x ,x1 2 4
x (0,0,0,0)3

dx +2dx +3dx +10dx = 01 2 3 4
4dx +5dx +6dx +8x dx = 01 2 3 4 4
 27dx +8dx +9dx +3x = 01 2 3 4
(0,0,0,0) x ,x ,x x1 2 3 3

0 0 0x (0)+2x (0)+3+10x (0) = 0 1 2 4
0 04x (0)+5x (0)+6+0 = 01 2 0 07x (0)+8x (0)+9+0 = 01 2
0 0x (0) = 1 x (0) = −21 2
0x (0) = 04
Attheptcomputedierenotoiisnbinatneartemimplicitlyoffunctionsequationstiation..Shothewlinessysfunctionsrstointhisthatgiv,esnearusdenes(consideringtheConsiderImplicitdenesfrom,Linearsoionstheaimplicitwfunctionetheoremisasasfunctionssofandensuresthenthatts)).the,system;asofdeasfunctionsimplicitlyofrelationsimplicitlyyieldssystemdierennear.thetthatystemkThisheccomctoofTl,swteoneedgivtodeterminancthecofk,thatequalthe(30determinanpt,otheflinetheyieldsmatrixthistheer.Answnesthat.7.
2 2 2 2V x +y ≤ z≤ 2−(x +y ) S V
3 3 2~ ~F F(x,y,z) = (x −y ,x y,0)
ZZ
~F·~ndσ .
S
~ ~F S (F) =ZZ
2 2 23x +x = 4x I = 4xdxdydz V
V
Z Z Z 2 Z Z Z1 2π 2−r 1 2π 1
2 2 3 2 2 3 5I = 4r cos (θ)rdzdθdr = 4r (2−2r )cos (θ)dθ)dr = 8π (r −r )dr .
2r=0 θ=0 z=r r=0 θ=0 r=0
1 1 2π
I = 8π( − ) =
4 6 3
2 20≤ z≤ 1 S x +y = z 1≤ z≤ 2
2 2x +y = 2−z
tcomputerstaofeusdenitionLet,er.cylindricalAnswecomputeatoytegraltheinThistheideayswaineinvishaisw.tthedierenenoinwottoinomputeNoCoha.computeulausingformatheey;b,eldsurfaceectorenveneofwforaergenceDeneisnormal.ysov,givrordinates.ectuseouherethedygob.tedworiene,voftooundarythebtegralthetheyofbsurfaceDenotet.grequationlhwheneit.oisthegoequationdgivtobparametrizationsthe;GivthewwthroughtoandeusingectedDivisTheorem.erthelesssurfaceagivablWlyhayieldstegralesofthespaceofIteadivodierenideacomputationsuseeheresameSowhictworegiontthegivethebresult,Lethts)asoinbpexp(35butThisnevevalwenystuapleasure.8. ZZ
3 3x +y
2 2 xyD x,y y −2x≤ 0 x −2y≤ 0 e dxdy
D
2 2x = u v y = uv
ZZZ
2 22 2 2R (x,y,z) x +y +z ≤ 4 z≥ 0 x y zdxdydz
R

22uv u
.2v 2uv
2 23u v (u,v)
2 4 2 4 2 2x,y u,v > 0 u v ≤ 2u v u v ≤ 2uv u,v > 0
3 3u ≤ 2 v ≤ 2
2 2x y3 3u = v =
y x
Z 1/3Z 1/3 Z 1/32 2 2 4
3 3 3 eu +v 2 2 2 u 2e 3u v dudv = u e e du = .
3u=0 v=0 u=0
3 3 3 3 3 3u +v u v 2 v ve = e e 3v e e
x = rcos(θ)sin(ϕ) y = rsin(θ)sin(ϕ) z = rcos(ϕ)
 
cos(θ)sin(ϕ) −rsin(θ)sin(ϕ) rcos(θ)cos(ϕ)
 sin(θ)sin(ϕ) rcos(θ)sin(ϕ) rsin(θ)cos(ϕ) .
cos(ϕ) 0 −rsin(ϕ)
D

2 2 2 2 2 2 2 2D = cos(ϕ) −r sin (θ)sin(ϕ)cos(ϕ)−r cos (θ)sin(ϕ)cos(ϕ) −rsin(ϕ) rcos (θ)sin (ϕ)+rsin (θ)sin (ϕ)
2 2 2 2 2D =−r cos (ϕ)sin(ϕ)−r sin(ϕ)sin (ϕ) =−r sin(ϕ) .
Z Z Z2 2π π/2
5 2 2 4 2
I = r cos (θ)sin (θ)sin (ϕ)cos(ϕ)r sin(ϕ)dϕdθdr
r=0 θ=0 ϕ=0
Z Z Z Z Z π/22 2π π/2 2 2π 2 6sin (2θ) sin (ϕ)7 2 2 5 7I = r cos (θ)sin (θ)sin (ϕ)cos(ϕ)dϕdθdr = r
4 6r=0 θ=0 ϕ=0 r=0 θ=0 ϕ=0
Z Z Z Z Z2 2π 2 2 2π 27 7 8sin (2θ) r 1−cos(4θ) r 2 4π7I = r dθdr = dθdr = π dr = π = .
24 24 2 24 8.24 3r=0 θ=0 r=0 θ=0 r=0
thetoecteariableserespewithisexpansionhaancUsingtheiscaseariablesthatvarefgivothange(a)csetthethatofandmatrixiscobianoatoJandthe,:onbadthethatisnotariablesiscobianitweringhvbrecoJacobianutrobisheart,oneyviouslybanditvwcknohecjustlto.thissameeThesebeouldmwtheitforcoursetoofNext,;thisariablesThevofofofhangeJcAnswthisComputeof,talldeterminanthecobian(b)aandJ.thesuccomputeofto(a)needEvehasWsince.the,obRememthisbone-to-one,eringariablesthafthangewourekneedctoneedusestiltheWabsolute,vasaluetheofconditionsthe.determinanandtvinusttheoneinconditionstene;gral,domainwndeneedobtainw,.ordinatesmatrixcoofsphericaldeterminanuseisusvethangeLthis(b)matrix)asTheaer.tegratesw,in.and.thatobtainfactthatthesucusedofehangelastevLetofthatc)(UseariablesCompute(Wtoofequalhangeetheb.tovout,turnshtegralalldeterminanctsetdenotethepLetofts)eninouroin,(30tuallyeasier

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents