Adaptive finite element methods for computing nonstationary incompressible flows [Elektronische Ressource] / vorgelegt von Michael Schmich
186 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Adaptive finite element methods for computing nonstationary incompressible flows [Elektronische Ressource] / vorgelegt von Michael Schmich

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
186 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Inaugural-DissertationzurErlangung der DoktorwürdederNaturwissenschaftlich-Mathematischen GesamtfakultätderRuprecht-Karls-UniversitätHeidelbergvorgelegt vonDiplom-Mathematiker Michael Schmichaus MannheimTag der mündlichen Prüfung: 15. Dezember 2009Adaptive Finite Element Methods forComputing Nonstationary IncompressibleFlowsGutachter: Prof. Dr. Dr. h.c. Rolf RannacherProf. Dr. Peter BastianAbstractSubject of this work is the development of numerical methods for efficiently solving nonstationaryincompressible flow problems. In contrast to stationary flow problems, here errors due to discretiza-tion in time and space occur. Furthermore, especially three-dimensional simulations lead to hugecomputational costs. Thus, adaptive discretization methods have to be used in order to reduce the costs while still maintaining a certain accuracy.The main focus of this thesis is the development of an a posteriori error estimator which iscomputable and able to assess both discretization errors separately. Thereby, the error is measuredin an arbitrary quantity of interest (such as the drag-coefficient, for example) because measuringerrors in global norms is often of minor importance in practical applications. The basis for this is afinite element discretization in time and space. The techniques presented here also provide localerror indicators which are used to adaptively refine the temporal and spatial discretization.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 21
Langue English
Poids de l'ouvrage 25 Mo

Extrait

Inaugural-Dissertation
zur
Erlangung der Doktorwürde
der
Naturwissenschaftlich-Mathematischen Gesamtfakultät
der
Ruprecht-Karls-Universität
Heidelberg
vorgelegt von
Diplom-Mathematiker Michael Schmich
aus Mannheim
Tag der mündlichen Prüfung: 15. Dezember 2009Adaptive Finite Element Methods for
Computing Nonstationary Incompressible
Flows
Gutachter: Prof. Dr. Dr. h.c. Rolf Rannacher
Prof. Dr. Peter BastianAbstract
Subject of this work is the development of numerical methods for efficiently solving nonstationary
incompressible flow problems. In contrast to stationary flow problems, here errors due to discretiza-
tion in time and space occur. Furthermore, especially three-dimensional simulations lead to huge
computational costs. Thus, adaptive discretization methods have to be used in order to reduce the costs while still maintaining a certain accuracy.
The main focus of this thesis is the development of an a posteriori error estimator which is
computable and able to assess both discretization errors separately. Thereby, the error is measured
in an arbitrary quantity of interest (such as the drag-coefficient, for example) because measuring
errors in global norms is often of minor importance in practical applications. The basis for this is a
finite element discretization in time and space. The techniques presented here also provide local
error indicators which are used to adaptively refine the temporal and spatial discretization. A key
ingredient in setting up an efficient discretization method is balancing the error contributions due
to temporal and spatial discretization. To this end, a quantitative assessment of the individual
discretization errors is required.
The described methods are validated by several numerical tests. These also include established
Navier-Stokes benchmarks as well as a two-phase flow problem with complex three-dimensional
geometry.
Zusammenfassung
Gegenstand dieser Arbeit ist die Entwicklung numerischer Verfahren zur effizienten Lösung insta-
tionärer inkompressibler Strömungsprobleme. Im Gegensatz zu stationären Strömungsproblemen
entstehen hier Diskretisierungsfehler sowohl durch die Diskretisierung in der Zeit als auch durch
die Diskretisierung im Ort. Außerdem führen insbesondere dreidimensionale Simulationen zu ei-
nem hohen Rechenaufwand. Dies erfordert die Verwendung adaptiver Diskretisierungen, um den
Rechenaufwand zu reduzieren und gleichzeitig eine gewisse Genauigkeit beizubehalten.
Der Schwerpunkt dieser Dissertation besteht in der Entwicklung eines auswertbaren a posteriori-
Fehlerschätzers,derdiegetrennteErfassungbeiderDiskretisierungsfehlerermöglicht.DerFehlerwird
dabei in einer beliebigen Größe (wie etwa dem Widerstandsbeiwert) gemessen, da Fehlerangaben in
globalen Normen in praktischen Anwendungen meist von geringerer Bedeutung sind. Grundlage
dafür ist die Verwendung von Finite-Elemente-Diskretisierungen in Ort und Zeit. Die vorgestellten
Techniken liefern außerdem lokale Fehlerindikatoren, die zur adaptiven Verfeinerung der Zeit- bzw.
Ortsdiskretisierung verwendet werden. Zur Gestaltung eines effizienten Diskretisierungsverfahren ist
die Balancierung der Fehlerbeiträge durch Zeit- bzw. Ortsdiskretisierung nötig, was eine zuverlässige
quantitative Erfassung der einzelnen Diskretisierungsfehler erfordert.
Die präsentierten Methoden werden anhand verschiedener numerischer Tests validiert. Dabei werden
auch etablierte Navier-Stokes-Benchmarks sowie ein Zweiphasenströmungsproblem mit komplexer,
dreidimensionaler Geometrie betrachtet.Contents
1 Introduction 1
2 Theoretical Results 7
2.1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The incompressible Navier-Stokes equations . . . . . . . . . . . . . . . . . . 9
3 Space-Time Finite Element Discretization 15
3.1 Discretization in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Discontinuous Galerkin methods . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Continuous Galerkin methods . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Discretization in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Finite element spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Discretization on dynamic meshes . . . . . . . . . . . . . . . . . . . 22
3.3 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Residual based stabilization . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Local projection stabilization . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Formulation as time-stepping schemes . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 cG(s)dG(0) discretization . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 cG(s)dG(1) . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 cG(s)cG(1) . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Implementational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Computations on dynamic meshes . . . . . . . . . . . . . . . . . . . 32
3.5.2 Assembling and solving the system of equations in the time-stepping
formulation of the cG(s)dG(1) method . . . . . . . . . . . . . . . . . 34
3.5.3 Solving the linear subproblems . . . . . . . . . . . . . . . . . . . . . 36
4 A Posteriori Error Estimation 41
4.1 Abstract error representation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Derivation of the a posteriori error estimator . . . . . . . . . . . . . . . . . 43
4.3 Evaluation of the error estimators . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Localization of the error . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Adaptive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Heuristic error indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7.1 Numerical results employing the quantitative error estimator . . . . 60
4.7.2 Comparison with heuristic error indicators . . . . . . . . . . . . . . . 66
iContents
5 Issues on Dynamic Meshes 71
5.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Reduction to model . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Behavior of the error under temporal and spatial refinement . . . . . . . . . 78
5.3.1 Spatial refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Temporal refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Attempts to solve this problem . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Repeating one time step . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.2 H-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 V-pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Theoretical investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6 Applications 99
6.1 Laminar flow around a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.1 Two-dimensional test case . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 Three-dimensional test case . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Filling process of a lab-on-a-chip . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2.1 Formulation of the model . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2.2 Nondimensionalization for two-phase flow problems . . . . . . . . . . 135
6.2.3 Discretization of the model . . . . . . . . . . . . . . . . . . . . . . . 136
6.2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7 Conclusion and Outlook 157
Acknowledgments 159
List of Tables 161
List of Figures 165
List of Algorithms 169
Bibliography 171
ii1 Introduction
This work is devoted to the development of efficient discretization techniques for numerically
solvingnonstationaryincompressibleflowproblems. Sinceincontrasttostationaryproblems
we have to deal with the discretization in time as well as in space, one of the main topics
in setting up such an efficient algorithm is to obtain quantitative information about the
temporal and spatial error. This is a key ingredient because within an
efficient algorithm one has to decide which discretization has to be refined to reduce the
discretization error in the most efficient way.
The computational costs of numerically solving nonstationary flow problems are com-
paratively high due to the complex structure of such problems, especially when dealing
with nonstationary three-dimensional flow problems. Thus, it is crucial to apply adaptive
refinement techniques to reduce the size of the approximative problems without reducing
the accuracy of the approximation.
Adaptive methods are widely used in the context of finite element discretizations of partial
differential equations, see, for example, Verfürth [102] or Eriksson, Estep, Hansbo, and
Johnson [41] for an overview. In Bänsch [6], an adaptive strategy for the nonstationary
Navier-Stokes equations is developed which is based on a posteriori error estimates in the
energy-norm.
However, error estimation with respect to global norms such as the energy-norm sometimes
is not very efficient since in flow

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents