Atmospheric absorption models for the millimeter wave range [Elektronische Ressource] / von Thomas Kuhn
273 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Atmospheric absorption models for the millimeter wave range [Elektronische Ressource] / von Thomas Kuhn

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
273 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Informations

Publié par
Publié le 01 janvier 2003
Nombre de lectures 24
Langue English
Poids de l'ouvrage 16 Mo

Extrait

Atmospheric Absorption Models for
the Millimeter Wave Range
Thomas Kuhn
Universit at Bremen 2003Atmospheric Absorption Models for
the Millimeter Wave Range
Vom Fachbereich fur Physik und Elektrotechnik
der Universit at Bremen
zur Erlangung des akademischen Grades eines
Doktor der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation
von
Dipl.-Phys. Thomas Kuhn
aus Basel
1. Gutachter: Prof. Dr. K. F. Kun zi
2. Gutachter: Prof. Dr. J. Bleck-Neuhaus
Eingereicht am: 07.04.2003
Tag des Promotionskolloquiums: 12.05.2003Contents
Abstract 3
Zusammenfassung 5
Glossary 7
Prolog 11
Acknowledgment 13
List of Publications 15
1 Introduction 17
2 Theoretical Aspects of Radiative Transfer in the STHz Spectral Range 21
2.1 Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Spectral Line Absorption Theory . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Line Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Line Shape Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Absorption Coe cient in the Impact Approximation . . . . . . . . . . 32
2.2.4 Water Vapor Absorption in the Quasi-static Approximation . . . . . . 36
3 Atmospheric Absorption Models 41
3.1 Oxygen Absorption in theSTHz Frequency Range . . . . . . . . . . . . . . . 42
3.1.1 Comparison of Oxygen Absorption Models . . . . . . . . . . . . . . . 46
3.2 Nitrogen Absorption in theSTHz Frequency Range . . . . . . . . . . . . . . 56
3.2.1 Common Atmospheric Absorption Models . . . . . . . . . . . . . . . . 59
3.3 Summary of the Dry Air Absorption . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Water Vapor Absorption Models . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Resonant Line Absorption Comparison . . . . . . . . . . . . . . . . . . 62
3.4.2 Empirical Far Wing Absorption Comparison . . . . . . . . . . . . . . 64
3.4.3 Impact of Model Di erences . . . . . . . . . . . . . . . . . . . . . . . . 68
4 AAM02 – A new Water Vapor Absorption Model 73
4.1 Water Vapor Absorption Measurements . . . . . . . . . . . . . . . . . . . . . 75
4.2 Spectral Line Absorption Contributions . . . . . . . . . . . . . . . . . . . . . 78
4.2.1 Rescaling of Pressure Broadening Parameters . . . . . . . . . . . . . . 79
4.2.2 Spectral Line Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Continuum Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 Discussion of the Continuum Parameter Sets . . . . . . . . . . . . . . 90
4.4 Parameter Set of theAAM02 Water Vapor Absorption Model . . . . . . . . 98
i4.5 Comparison of AAM02 with other Models . . . . . . . . . . . . . . . . . . . 100
5 Comparison of Absorption Models with Atmospheric Measurements 107
5.1 ARM Ground Based Radiometer Measurements . . . . . . . . . . . . . . . . . 107
5.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 AMSU-B Data of the Lindenberg Area . . . . . . . . . . . . . . . . . . . . . . 125
5.3 POLEX Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6 Conclusion 137
A Physical Constants and Units 141
A.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 Unit Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2.1 Number Density Unit Amagat . . . . . . . . . . . . . . . . . . . . . . 141
A.2.2 Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.2.3 Mixing Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.2.4 Absorption Unit Decibel and Neper . . . . . . . . . . . . . . . . . . . 145
B Atmospheric Structure 147
B.1 Structure of the Model Atmospheres . . . . . . . . . . . . . . . . . . . . . . . 147
B.1.1 ECMWF Pro les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C Line Shape Function 153
C.1 Derivation of the Spectral Density Function . . . . . . . . . . . . . . . . . . . 153
C.1.1 Approximations Used to Derive the Spectral Density Function . . . . 154
D Common Absorption Models 157
D.1 Oxygen Absorption Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
D.1.1 O -MPM93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572
D.1.2 O -85-O -MPM92 . . . . . . . . . . . . . . . . . . . . . . . . . 1592 2
D.1.3 O -PWR98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1602
D.1.4 O -PWR93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1612
D.1.5 O -PWR88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1612
D.2 Water Vapor Absorption Models . . . . . . . . . . . . . . . . . . . . . . . . . 164
D.2.1 H O-MPM87 Water Vapor Absorption Model . . . . . . . . . . . . . 1642
D.2.2 H O-89 Water Vapor Absorption Model . . . . . . . . . . . . . 1662
D.2.3 H O-MPM93 Water Vapor Absorption Model . . . . . . . . . . . . . 1682
D.2.4 H O-CP98 Water Vapor Absorption Model . . . . . . . . . . . . . . . 1712
D.2.5 H O-PWR98 Water Vapor Absorption Model . . . . . . . . . . . . . 1722
E Continuum Parameter Set 175
E.1 Laboratory Measurements of Water Vapor Absorption . . . . . . . . . . . . . 175
E.2 Fit of the Continuum Parameter Sets. . . . . . . . . . . . . . . . . . . . . . . 177
E.3 Comparison of Measurements with Model Calculations . . . . . . . . . . . . . 184
F Comparison of Absorption Models with Data 187
F.1 ARM Ground Based Radiometer Measurements . . . . . . . . . . . . . . . . . 187
F.1.1 Population Mean Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
F.1.2 Comparison Test with Westwater et al. . . . . . . . . . . . . . . . . . 188
F.2 AMSU-B Data of the Lindenberg Area . . . . . . . . . . . . . . . . . . . . . . 205
F.3 POLEX Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
iiG Bibliography 225
iiiivList of Figures
2.1 Einstein coe cients for the induced emission ( B ) and absorption (B ) as21 12
well as for the spontaneous emission (A ). E and E denote the energy21 low up
levels of the transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Radiativetransferalongthelineofsight(LOS)ofthesensor. TheSchwarzschild
equation considers the radiation budget of a small volume dV = dAds at a
pointP on the line of sight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Example of an integrated intensity calculation for a cloud-free mid-latitude
summer atmosphere, consisting of oxygen, nitrogen, and water vapor. A nadir
viewing geometry with a platform altitude of 830km is assumed. The cal-
culation is performed for di erent frequencies up to 400GHz. The inten-
sity unit is thermodynamic brightness temperature T with the de nitionB
I (S )=B (T ) (see Equation (2.12)). . . . . . . . . . . . . . . . . . . . . . 25 b B
2.4 Example of a transmission calculation for a cloud-free mid-latitude summer
atmosphere consisting of oxygen, nitrogen, and water vapor. A nadir viewing
geometry with a platform altitude of 830km is assumed. The calculation is
performed for dierent frequencies up to 400GHz. . . . . . . . . . . . . . . . 27
2.5 ExampleofaVanVleck–Weisskopflineshapefunctionwithcuto ( VVWC(,))j
andwithoutcuto ( VVW(,))cuto . Thedashedbluelineisthe VVWC(,)j j
line shape with a cuto frequency of 750GHz and the solid red line is the
VVW(,) line shape. The line center frequency of the 1 1 transitionj 1,0 0,1
is =556.9GHz. The atmospheric state is from a zonal mean mid-latitudej
summer atmosphere around 6km: T=262K, P =500hPa (Kneizys et al.,tot
1996). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Example of a Van Vleck–Weisskopf (VVW), Voigt (V) and Doppler (D) line
shape function. The line center frequency of the 1 1 transition is1,0 0,1
556.9GHz. The atmospheric state is from a mid-latitude summer atmosphere
(Kneizys et al., 1996). Plot (a) shows simultaneously the VVW (solid red)
and V (dashed blue) pro les around 5km ( T=267K, P =554hPa). Plot (b)tot
shows the VVW (solid red), V (dashed blue), and D (dashed-dotted green)
pro les around 50km ( T=276K, P =1hPa). . . . . . . . . . . . . . . . . . 36tot
2.7 Farwinglinecouplingfunctionˆ forH O–H O(leftplot)andH O–N (rightkl 2 2 2 2
plot)accordingtoTipping and Ma (1995). Thefrequencyisrelativetotheline
center frequency of water vapor transitions. (Figures adapted from Tipping
and Ma (1995).) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Far wing H O–N absorption features calculated according to Tipping and Ma2 2
(1995). (Figure adapted from Tipping and Ma (1995)).. . . . . . . . . . . . . 39
v6
163.1 Energy level triplet structure of molecular oxygen O . The molecular rota-28
tionangularmomentumisdenotedbyNwhileJisthetotalangularmomentum
including the spin. The solid arrows mark the transitions which build up the
60GHz band plus the remote line at 118GHz. The dashed arrows denote the
SMMW lines which connect adjacent triplets. Each triplet is labeled by the
rotational quantum number N. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 In uence of line coupling on the 60GHz band of oxygen. The solid line shows
the absorption calculated with line coupling (Y = 0) and the dashed linej
without line

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents