Biocompatible ultrathin coatings from isocyanate terminated star PEG prepolymers [Elektronische Ressource] / vorgelegt von Thomas Ameringer
157 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Biocompatible ultrathin coatings from isocyanate terminated star PEG prepolymers [Elektronische Ressource] / vorgelegt von Thomas Ameringer

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
157 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Biocompatible Ultrathin Coatings from Isocyanate Terminated Star PEG Prepolymers Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Chemiker Thomas Ameringer aus Ulm (Donau) Berichter: Universitätsprofessor Martin Möller essorin Doris Klee Tag der mündlichen Prüfung: 14. 06. 2006 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Die Natur ist unerbittlich und unveränderlich, und es ist ihr gleichgültig, ob die verborgenen Gründe und Arten ihres Handelns dem Menschen verständlich sind oder nicht. Galileo Galilei Contents Chapter 1 Introduction 1.1 Fabrication of DNA Microarrays 1 1.2 Contents of this Thesis 3 1.3 References 3 Chapter 2 Star Polymers for Bioactive Films 2.1 Introduction 5 2.2 Synthesis of Branched Polymer Structures 6 2.3 Adsorbed Polymers on Flat Surfaces 15 2.4 Protein Adsorption onto Artificial Surfaces 18 2.5 Bioresistance of PEG covered Surfaces 20 2.6 References 23 Chapter 3 End-capping of 6-arm Star Polymers with Isophorone Diisocyanate 3.1 Introduction 29 3.2 Experimental 32 3.3 Results and Discussion 34 3.4 Conclusions 42 3.

Informations

Publié par
Publié le 01 janvier 2006
Nombre de lectures 11
Langue English
Poids de l'ouvrage 7 Mo

Extrait





Biocompatible Ultrathin Coatings
from Isocyanate Terminated
Star PEG Prepolymers



Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-
Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Chemiker



Thomas Ameringer


aus Ulm (Donau)


Berichter: Universitätsprofessor Martin Möller essorin Doris Klee




Tag der mündlichen Prüfung: 14. 06. 2006



Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

































Die Natur ist unerbittlich und unveränderlich,
und es ist ihr gleichgültig,
ob die verborgenen Gründe und Arten ihres Handelns
dem Menschen verständlich sind oder nicht.



Galileo Galilei Contents

Chapter 1 Introduction

1.1 Fabrication of DNA Microarrays 1
1.2 Contents of this Thesis 3
1.3 References 3

Chapter 2 Star Polymers for Bioactive Films

2.1 Introduction 5
2.2 Synthesis of Branched Polymer Structures 6
2.3 Adsorbed Polymers on Flat Surfaces 15
2.4 Protein Adsorption onto Artificial Surfaces 18
2.5 Bioresistance of PEG covered Surfaces 20
2.6 References 23

Chapter 3 End-capping of 6-arm Star Polymers with Isophorone
Diisocyanate
3.1 Introduction 29
3.2 Experimental 32
3.3 Results and Discussion 34
3.4 Conclusions 42
3.5 References 43

Chapter 4 Preparation and Characterization of IPDI-terminated Star
Polymer Coatings
4.1 Introduction 45
4.2 Experimental 46
4.3 Results and Discussion 49
4.4 Conclusions 66
4.5 References 67

Chapter 5 Swelling Behavior of IPDI-terminated Star Polymer Hydrogels
in Bulk and on Surfaces
5.1 Introduction 71
5.2 Experimental 72
5.3 Results and Discussion 75
5.4 Conclusions 80
5.5 References 81


Chapter 6 Synthesis and Coating of Acrylate-terminated Star Polymers

6.1 Introduction 83
6.2 Experimental 84
6.3 Results and Discussion 87
6.4 Conclusions 98
6.5 References 98
Chapter 7 Layer-by-layer Growth of Isocyanate/ Acrylate-terminated Star
Polymers on Silicon Substrates
7.1 Introduction 101
7.2 Experimental 102
7.3 Results and Discussion 106
7.4 Conclusions 111
7.5 References 112

Chapter 8 Endcapping of 6 arm Star Polymers with Divinyl Sulfone
8.1 Introduction 113
8.2 Experimental 114
8.3 Results and Discussion 115
8.4 Conclusions 121
8.5 References 122

Chapter 9 Ultrathin Functional Star PEG Coatings for DNA Microarrays
9.1 Introduction 125
9.2 Experimental 126
9.3 Results and Discussion 129
9.4 Conclusions 134
9.5 References 135

Summary 137

Zusammenfassung 140

Danksagung 143

Lebenslauf 145

List of Abbreviations
q advancing contact angle adv
free energy of mixing DG m
enthalpy of mixing DH m
q receding contact angle rec
entropy of mixing DS m
µ-star mikto arm star polymer
A area per molecule
Å Angstroem
AA acrylic acid
AAC acrylic acid chloride
AFM/SFM atomic/scanning force microscopy
ASTM American Society for Testing and Materials
ATRP atom transfer radical polymerization
(AB) radial arm star polymer x
A B mikto arm star polymer (2 different arm types) x y
BO butylene oxide
C Buckminster Fullerene 60
D polydispersity index (D = M / M ) w n
DABCO 1,4-diazabicyclo[2.2.2]octane
DBTDL dibutyl tin dilaurate
DSC differential scanning calorimetry
DVB divinyl benzene
EDA ethylene diamine
ELISA Enzyme-linked immunosorbent assays
EO ethylene oxide
FITC Fluorescein isothiocyanate
GC Gas chromatography
GTP group transfer polymerization
HDI hexamethylene diisocyanate
HEUR hydrophobically modified ethoxylated urethanes
HPLC High Performance Liquid Chromatography IPDI 5-isocyanatomethyl-3,3,5-trimethyl-1-cyclohexyl isocyanate
IR infrared (spectroscopy)
KDL short path distillation apparatus
LB Langmuir Blodgett
M monomer
MALDI-TOF MS matrix assisted laser desorption by ionization - time of flight mass
spectrometry
M molecular weight between two crosslinks c
M number average molecular weight n
M weight average molecular weight w
N number of star arms
NCO isocyanate endgroup
NIPAM N-isopropyl acrylamide
NMR nuclear magnetic resonance
OH hydroxyl endgroup
P(L-Lac) poly(L-lactide)
P2VP poly(2-vinylpyridine)
PAMAM poly(amido amine) dendrimer
PB poly(butadiene)
PBO poly(butylene oxide)
PBS phosphate buffered saline
PDMS poly(dimethyl siloxane)
PDVS poly(divinyl sulfone)
PE poly(ethylene)
PEG poly(ethylene glycol)
PEO poly(ethylene oxide)
PI poly(isoprene)
pI isoelectric point
PLL poly(L-Lysine)
PMMA Poly(methyl methacrylate)
PMMA poly(methyl methacrylate)
pMU primary monourethane
PO propylene oxide
PPO poly(propylene oxide) PS poly(styrene)
PS-b-PEO -block-poly(ethylene oxide)
PS -b-PEO mikto-poly(styrene)-block- n m
PU polyurethane
PVC poly(vinyl chloride)
QCM quarz micro balance
RGD arginine- glycine-aspartate
ROMP Ring-opening metathesis polymerization
ROMP controlled ring-
SAM self assembled monolayer
SEC Size Exclusion Chromatography
SFM scanning force microscopy
sMU secondary monourethane
T temperature
TAC “thiophilic” adsorption chromatography
TAEA tris-aminoethyl amine
TDI toluene diisocyanate
TEA triethylamine
Tg glass transition temperature
TGA thermal gravimetric analysis
THF tetrahydrofurane

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents