Chromatin condensation during Drosophila spermiogenesis and decondensation after fertilization [Elektronische Ressource] / Sunil Jayaramaiah Raja
100 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Chromatin condensation during Drosophila spermiogenesis and decondensation after fertilization [Elektronische Ressource] / Sunil Jayaramaiah Raja

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
100 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Chromatin condensation during Drosophila spermiogenesis and decondensation after fertilization Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie Philipps-Universität Marburg -Entwicklungsbiologie- Sunil Jayaramaiah Raja Marburg/Lahn 2005 This analysis was carried out from March 2002 to March 2005 at the Fachbereich Biologie (Entwicklungsbiologie) of Philipps-Universität Marburg under the supervision of Prof. Dr. Renate Renkawitz-Pohl. Vom Fachbereich Biologie Der Philipps-Universität Marburg als Dissertation am 20.05.2005 angenommen. Erstgutachter: Prof. Dr. Renate Renkawitz-Pohl Zweitgutachter: Prof. Dr. Guntram Suske Tag der mündlichen Prüfung: 20.05.2005 I Table of contents 1. Sumary 1 2. Introduction 3 2.1 Why study „Spermatogenesis“ ? 3 2.2 Structure and cytology of Drosophila melanogaster spermatogenesis 3 2.3 Germinal Proliferation center 2.4 Primary spermatocyte growth phase 4 2.4.1 Translational repression 5 2.5 Spermatid Differentiation 7 2.5.1 Onion Stage spermatid 7 2.5.2 Spermatid elongation and maturation 8 2.5.3 Morphological changes in the mitochondrial derivative during the elongation stage 8 2.6 Chromatin condensation and nuclear shaping 9 2.6.

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 13
Langue English
Poids de l'ouvrage 7 Mo

Extrait




Chromatin condensation during Drosophila
spermiogenesis and decondensation after
fertilization



Dissertation
zur
Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer. nat.)


dem
Fachbereich Biologie
Philipps-Universität Marburg
-Entwicklungsbiologie-



Sunil Jayaramaiah Raja


Marburg/Lahn 2005


This analysis was carried out from March 2002 to March 2005 at the Fachbereich Biologie
(Entwicklungsbiologie) of Philipps-Universität Marburg under the supervision of Prof. Dr.
Renate Renkawitz-Pohl.



















Vom Fachbereich Biologie
Der Philipps-Universität Marburg als Dissertation am 20.05.2005 angenommen.

Erstgutachter: Prof. Dr. Renate Renkawitz-Pohl
Zweitgutachter: Prof. Dr. Guntram Suske

Tag der mündlichen Prüfung: 20.05.2005


I
Table of contents


1. Sumary 1


2. Introduction 3

2.1 Why study „Spermatogenesis“ ? 3
2.2 Structure and cytology of Drosophila melanogaster spermatogenesis 3
2.3 Germinal Proliferation center
2.4 Primary spermatocyte growth phase 4
2.4.1 Translational repression 5
2.5 Spermatid Differentiation 7
2.5.1 Onion Stage spermatid 7
2.5.2 Spermatid elongation and maturation 8
2.5.3 Morphological changes in the mitochondrial derivative
during the elongation stage 8
2.6 Chromatin condensation and nuclear shaping 9
2.6.1 Sperm nuclear basic proteins involved in chromatin
condensation during spermiogenesis 10
2.6.2 Don Juan as a candidate for basic chromosomal protein 11
2.6.3 Candidate genes for protamines and spermatid specific
linker histone variants 13
2.7 Ubiquitin mediated protein degradation in Drosophila 13
2.7.1 SCF complex (Skp/Cullin/Roc1/F-box) 14
2.8 Individualization 15
2.9 Fertilization in Drosophila 16
2.10 Questions tobe adresd8

3. Materials 18

3.1 Instruments 18
3.2 Chemicals and growth media 18
3.3 Antibodies andAntiserum 20
3.4 Molecular biological reagents and kits 20
3.5Enzymes 21 6 Other Materials
3.8 Plasmids 21
3.9 Fly stocks 22
3.10 Bacterial strain used for transformation and culture (Escherichia coli) 24
3.11 Liquid Culture 24
3.12 Synthetic oligonucleotide 24
3.13 Sequencing DNA 25

4. Methods 26

I Drosophila melanogaster culture 26 II
4.1 P-element mediated germline transformation in Drosophila
melnogaster 26
4.1.1 Collection of embryos 26
4.1.2Microinjection of Embryos 27
4.1.3 Selection of transformed flies 27

II Preparation and Analysis of DNA 28

4.2 Production of chemically competent bacteria (Escherichia coli) 28
4.3 Transformation of chemically competent bacteria 29
4.4 Preparation of plasmid DNA from E. coli 29
4.5 Midi preparation of plasmid DNA 30
4.6 n of genomic DNA from Drosophila 30
4.7 Agarose gel electrophoresis 31
4.8 Isolation of DNA from agarose gels 31
4.9 Estimation of DNA concentration using Spectrophotometer 32
4.10 Enzymatic manipulation of nucleotides 32
4.10.1 Digestion of DNA with the help of Restriction endonuclease 32
4.10.2 Dephosphorylation of the 5` ends to prevent religation of the
vector 33
4.10.3 Ligation of DNA fragments 33
4.10.4 Polymerase chain reaction (PCR) 33
4.11 P-Element jumpout 34
4.11.1 P-Element Local hop 35
4.11.2 Location of the site of integration of P-element in each local hop
lines 35

III Histological methods 36

4.12 mRNA insitu hybridisation on adult testis 36
4.12.1 Preparation of Dig labelled DNA probe 36
4.12.2 Testing the DIG labelled DNA probe 36
4.12.3 Fixation of adult testis 37
4.12.4Prehybridisation of testis 37
4.12.5 Hybridisation and staining 38
4.13 Antibody staining on adult Drosophila testis squash preparations 38
4.14 X-Gal Staining for Drosophila tesi 40
4.15 Analysis of the embryonic phenotype 40
4.16 Fertility test 41
4.17 Antibody staining on polytene squash preparations 41

5.Results 43

I. Functional analysis of Don Juan during spermiogenesis 43

5.1 Premature expression of Don Juan leads to male sterility 43
5.2 P-elment local hop 45
5.2.1 Is the P-element insertion indeed responsible for the lethality? 45

II. Drosophila Protamines and Mst77F replace histones
during chromatin condensation in late spermatids 48 III

5.3 In Drosophila, two putative protamine genes and Mst 77F encode
proteins of the sperm chromatin 48
5.4 Mst35Ba, Mst35Bb and Mst77F are transcribed in the male
germ line from the primary spermatocyte stage onward 51
5.5 Identification of the minimal promoter and the Translational
Repression Element (TRE) for Mst35Bb 52
5.6 Loss of Histones during nuclear shaping with the simultaneous
accumulation of Protamine A, Protamine B and
Mst77F in the sperm head 54
5.7 Ectopic overexpression of protamines in salivary gland cells 57
5.8 Protamine genes are not haploinsufficient in Drosophila 58
5.9 Mst77F is essential for male fertility 59
5.10 Mst77F-eGFP rescues ms(3)nc3 mutants 62
5.11 ProtamineB-eGFP cannot replace Mst77F 62
5.12 Protamine deposition is independent of nuclear shaping 64

III Histone degradation 66

5.13 Transcriptional scilencing and histone H2AvD degradation 66
5.14 Screening of male sterile mutants for Histone degradation 66
5.15 UBCD1 (effete) is required for spermatogenesis 67
5.16 A Novel function of UbcD1 during spermiogenesis 68
5.17 Ring fingure E3 ligase Cullin-1 and Cullin-3 are expressed
during Drosophila spermatogenesis 69
5.18 Pattern of expression of Cullin-1 during Drosophila
spermatogensi 69
5.19 Cullin-3 (uftagu) is expressed in the elongated
spermatids during Drosophila spermiogenesis 70

IV Removal of Protamines and Mst77F after fertilization 72

5.20 ProtamineA and ProtamineB removal from the male
pronucleus depends on the maternaly supplied Sesame protein 72
5.21 Removal of Mst77F from the male pronucleus is independent
of Sesame 74


6. Discusion 75
6.1 Role of Donjuan during Drosophila spermatogenesis 75
6.2 Chromatin condensation during Drosophila spermiogenesis 75
6.3 Mst35Ba, Mst35Bb and Mst77F are transcibed at
primary spermatocyte stage and are translationally
repressed till the elongated spermatid stage 76
6.4 Comparison of mammalian and Drosophila protamines 76
6.5 Histone displacement and incorporation of protamines
and Mst77F during Drosophila spermiogenesis 77
6.6 In Drosophila, mammalian HILS1 related protein Mst77F
is coexpressed with protamines 79
6.7 Role of Mst77F in nuclear shaping 80 IV
6.8 Histone degradation during Drosophila spermiogenesis 81
6.9 Sesame (HIRA) is essential to remove protamines from
the male pronucleus but not for shape changes of the nucleus 83


7. Refrences 85




















1. Summary 1
1. Summary

Chromatin condensation is a typical feature of sperm cells. During mammalian
spermiogenesis, histones are first replaced by transition proteins and then by protamines,
while little is known for Drosophila. Here I characterize three male specific genes in the fly
genome, Mst35Ba, Mst35Bb and Mst77F. With eGFP fusion for these above mentioned
proteins, I show here that Mst35Ba and Mst35Bb indeed encode for dProtA (Drosophila
ProtamineA) and dProtB (Drosophila ProtamineB), respectively and show 94% identity to
each other. Drosophila protamines are considerably larger than mammalian protamines, but,
as in mammals, both protamines contain typical cysteine/arginine clusters. Ectopic expression
of both dProtA and dProtB in the salivary gland cells localizes to the nucleus. Both the
protamines binds to the polytene chromosomes without any specificity for the euchromatin or
the heterochromatin reflecting the binding status of protamines in sperm nucleus. Unlike in
mammals, Drosophila protamine genes are not haplo insufficient. Screening of Zuker mutant
collection did not show any mutation in both protamine genes, which argues for functional
redundancy.
Mst77F encode a spermatid specific linker histone-like protein. The expression pattern
of Mst77F overlaps the pattern of protamines as a chromatin component. Mst77F shows
significant similarity to mammalian HILS1 protein. The ProtamineA-eGFP, ProtamineB-<

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents